Master Thesis

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Cybernetics

Tools for the Development of Advanced
Thermal Management Techniques for
Future Safety-Critical Embedded Systems

Tibor Ro6zsa

Supervisor: Ing. Michal Sojka, Ph.D.

Field of study: Open Informatics

Subfield: Computer Vision and Image Processing
August 2020

ii

L MASTER'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

l. Personal and study details
s N
Student's name: Roézsa Tibor Personal ID number: 452919

Faculty / Institute: ~ Faculty of Electrical Engineering
Department / Institute: Department of Cybernetics

Study program: Open Informatics

Specialisation: Computer Vision and Image Processing

Il. Master’s thesis details

e ™
Master’s thesis title in English:

Tools for the Development of Advanced Thermal Management Techniques for Future Safety-Critical
Embedded Systems

Master’s thesis title in Czech:
Nastroje pro vyvoj pokrocilych technik fizeni teploty pro safety-critical vestavéné systémy

Guidelines:

1. Make yourself familiar with multi-core heterogeneous (CPU+GPU) chips for industrial applications such as NXP i.MX8.
2. Develop a tool to measure temperature at various places on the chip and/or board using a thermal camera (perhaps
using provided SDK). The measurement points should remain the same even after small board/camera movements.

3. Develop a benchmarking tool (SW) for measuring thermal properties of the HW platform running a Linuxbased OS under
various workloads.

4. Use the developed tools to determine heat sources on the chip for different workloads (both micro- and
macro-benchmarks).

5. Propose a method for reducing chip temperatures during execution of the following workloads: a) software 3D renderer
and b) image processing algorithms (object tracking). Use the developed benchmarks and tools from previous points to
evaluate effectiveness of the proposed method.

6. Document all findings.

Bibliography / sources:
[1] Hartley, R. and Zisserman, A. Multiple View Geometry in Computer Vision. Cambridge University Press, 2nd ed, 2003.
[2] K. Deyv, I. Paul, W. Huang, Y. Eckert, W. Burleson, and S. Reda, “Implications of Integrated CPU-GPU Processors on
Thermal and Power Management Techniques,” arXiv:1808.09651 [cs], Aug. 2018.
Name and workplace of master’s thesis supervisor:
Ing. Michal Sojka, Ph.D., Embedded Systems, CIIRC

Name and workplace of second master’s thesis supervisor or consultant:

Date of master’s thesis assignment: 17.01.2020 Deadline for master's thesis submission: 14.08.2020

Assignment valid until: 30.09.2021

Ing. Michal Sojka, Ph.D. doc. Ing. Tomas Svoboda, Ph.D. prof. Mgr. Petr Pata, Ph.D.

Supervisor’s signature Head of department’s signature Dean’s signature

CVUT-CZ-ZDP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

lll. Assignment receipt

The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZDP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

Acknowledgements

I would like to thank my supervisor,
Michal Sojka for his invaluable guidance
throughout my work in CIIRC; other
members of the CIIRC THERMAC team
(Ondrej Benedikt, Joel Matéjka, Frantisek
Fladung, Alex Barinov) for their insight
and contributions to the tools described
in this thesis; and Ondfej Drbohlav for
his valuable advice in image processing.

Declaration

I declare that I wrote the presented thesis
on my own and that I cited all the used in-
formation sources in compliance with the
methodical instructions about the ethical
principles for writing an academic thesis.

In Prague, 14. August 2020

Abstract

Software-based temperature reduction
methods show great potential for small
aircraft avionics computing platforms by
allowing improved dependability, perfor-
mance and reduction in size and weight
without increasing hardware costs. To
evaluate such methods, we present a pair
of tools for recording and processing data
from temperature sensors and a thermal
camera during the execution of various
workloads. These tools are then used
to determine locations of on-chip heat
sources and to propose methods for re-
ducing chip temperature. The tools meet
their requirements and are successfully
used for the evaluation of temperature
reduction methods.

Keywords: temperature measurement,
on-chip sensor, thermal camera, heat
source, thermal management

Supervisor: Ing. Michal Sojka, Ph.D.

vi

Abstrakt

Softwarové metody snizovani teploty uka-
zuji velky potencidl pro vypocetni plat-
formy malych letadel pro avioniku tim,
ze umoznuji zvysenou spolehlivost, vy-
kon a zmenseni velikosti a hmotnosti bez
zvysSeni nakladi na hardware. Pro vy-
hodnoceni téchto metod uvadime dvojici
nastroj pro zédznam a zpracovani dat z
teplotnich senzord a z termélni kamery
pri riznych pracovnich zatizeni.. Tyto na-
stroje jsou pak pouzité k lokalizaci zdroju
tepla na ¢ipu a k navrhovani metod pro
snizovani teploty ¢ipu. Néstroje splnuji
jejich pozadavky a jsou tspésné pouzité
pro vyhodnoceni metod snizovani teploty.

Kli¢ova slova: méreni teploty, senzor
na chipu, termokamera, zdroj tepla,
tepelné fizeni

Contents
1 Introduction 1l
2 Hardware platforms 3
2.1 Target hardware platforms

2.2 Thermographic camera &
processing hardware..............

3 Thermobench and related tools [7!

3.1 Thermobench

3.1.1 Requirements...............

3.1.2 Design and implementation . .

313 Results L.
3.2 Thermobench grapher tools
3.3 Thermobench benchmarks 15l
3.4 Thermobench experiments

3.4.1 Experiment setup

342 Results 17

3.4.3 Conclusion 19

vii

4 Tracking in image processing
4.1 Tracking fundamentals

4.2 Correspondence problem and
solutions............

4.2.1 Keypoint detection
4.2.2 Descriptor construction
4.2.3 Descriptor matching
4.2.4 Robust model estimation. . ..

4.3 Object tracking methods.

4.3.1 Kernelized Correlation Filter
(KCF) Tracker

4.3.2 Kanade-Lukas-Tomasi (KLT)
Tracker............

5 Thermocam-PCB tool
5.1 Requirements
5.1.1 Functional requirements
5.1.2 Quality requirements

5.2 Related work

5.3 Design & Analysis

5.3.1 Choosing the preprocessing 6.6 Conclusion 66/
method 39

)) 7 Temperature reduction methods |67
5.3.2 Choosing the tracking

algorithm
7.1 Experiment setup.............
5.3.3 Tuning the chosen tracking
algorithm..................... T2Results............ 68
5.4 Implementation 7.2.1 Compiler optimization level .
5.4.1 Requirements & Compilation 7.2.2 Frequency scaling
542 Usage ..o 7.3 Temperature reduction methods
5.4.3 Command line reference [53
8 Conclusion 71
5.5Results
A Bibliography 73
6 Determining heat sources on chip
for different workloads 57|
6.1 Hardware setup
6.2 Experiment setup
6.3 Theoretical basis 60

6.3.1 The heat diffusion equation .

6.3.2 Determining thermal

diffusivityo
6.4 Implementation
6.5 Experiment results............

viii

Figures

2.1 Embedded platforms used by

Thermobench 4
2.2 Hardware used by

Thermocam-PCB 5
3.1 3 views of HTML generated from

the report generator tool
3.2 GUI of the Thermobench Data

Visualizer
3.3 Plots from Thermobench.jl

functions
3.4 ALU vs SIMD instructions 32bit

float addition................... 18]
3.5 Arithmetic benchmark examples
3.6 32bit float MADD vs Multiply &

Add 20)
3.7 The effect of changing data on

int32 addition 20
4.1 Projection of a side of a sphere to

the image plane

3D points {I, J, K} project to 2D

points {I’, J’, K’} in the image

plane i
4.2 Stages of the correspondence

matching pipeline...............

ix

4.3 Point neighborhoods (red
rectangle) moved slightly off-center
(green rectangle), and their difference.
Corners , differ from their
surroundings in all directions, as
opposed to homogeneous

surfaces(4.3¢) or edges (4.3h)).

4.4 Multi-scale detection

4.5 Keypoint normalization methods

4.6 Descriptor sampling patterns.
Gradients are weighed with a 2D
Gaussian with variance dependent on

circle size. 26
4.7 Sampling patterns for binary
descriptors

4.8 Image pairs with corresponding

points

4.9 Perspective transformation model

4.11 Circular matrix of image
preprocessed with cosine window

5.1 Cooldown of checkered pattern
made of low thermal emissivity
(=~ 0.03) aluminium foil and high
thermal emissivity (= 0.95) electrical

insulating tape
5.2 Preprocessing techniques

5.3 Camera movement over plane,

described by homography [HZ04] .

5.4 Initial correspondence matching
pipeline oL

5.5 One original and two transformed
images from the small image set . .

5.6 One unchanged and two
transformed images from the large

imageset [45]

5.7 Inverse mean distance of matched
descriptors oL

5.8 Capped negative projection error
5.9 Projection error histograms

5.10 The three possible views of
Thermocam-PCB

5.11 Camera image with POI
published on the webserver.

5.12 Smoothed heatmap of a single
frame from GPU 32-bit float
addition

5.13 Thermobench &
Thermocam-PCB measurement

comparison 55|
5.14 Failure mode for tracking

6.1 Hardware setup — external view
and view from WIC 58]

6.2 Normalization of the tilted image
to top-down view

6.3 Heat source detection on the TX2
SoC during the CPU 32bit integer

addition benchmark with all cores

6.4 Combined heat source histogram
plots of CPU float/int benchmarks
Red, Cyan, Yellow, Magenta =
Cortex-A57 core 0,1,2,3
Green, Blue = Nvidia Denver 2 core

6.5 Heat source histogram plot of the
GPU arithmetic benchmark run .. [64

6.6 Heat source histogram plot of
random memory access benchmarks
on the SoC
Red = L1 cache, Green = L2 cache,
Blue = Main memory

6.7 Heat source histogram plots of
random memory access benchmarks
on RAM chips
Red = L1 cache, Green = L2 cache,
Blue = Main memory

7.1 Compiler optimization level
comparison —Temperature vs. work

done ... 69

7.2 Frequency scaling comparison . .

Tables

2.1 NXP i MX8QMMEK & NVIDIA
Jetson TX2 Developer Kit technical

specifications [NVI20][NXP2()]

2.2 WIC technical specifications

2.3 MinnowBoard Turbot Board
technical specifications [Rub20)

3.1 Features of the Thermobench tool

4.1 Examples of common robust model
estimation methods 30/

4.2 Mean RANSAC iterations required

for an all-inlier sample [JM20e] ..

5.1 All pipeline stages, methods and
hyperparameters searched........

5.2 Homography parameter ranges and
descriptions

5.3 Initial parameter ranges for the

FAST keypoint detector and BRISK
descriptor extractor methods

5.4 Initial and final pipeline methods
and parameters

6.1 Arithmetic benchmarks run for
determining heat sources

Xi

6.2 Memory benchmarks run for
determining heat sources

6.3 Mean temperatures of chips at the

end of random access benchmark

runs in °C

Chapter 1

Introduction

Many modern computing platforms in safety-critical domains such as aviation
are based on Multiprocessor System-on-Chip (MPSoC). Such platforms
guarantee high performance as long as the chip stays in a strict thermal range,
which is achieved through either active cooling (usually implemented by
forcing airflow through a CPU fan) or passive cooling (implemented by
installing a heat sink).

Active cooling often complicates mechanical design and may not be viable
due to limited airflow. Passive cooling is less effective and using larger heat
sinks may significantly increase weight and size. Thus, there is a need for
complementary methods to reduce the peak temperatures in MPSoCs chips.

The work described in this thesis is part of the THERMAC project. The
main goal of the project is to develop software-based methods to reduce the
operating temperature of MPSoC platforms for avionics applications. The
decreased temperature improves dependability, computing performance, and
reduces size and weight of electronics due to relaxed dissipation requirements.
It also allows the integration of a higher number of functionalities on the
same computing platform.

Specifically, the project aims to:

® Reduce operating temperature by 20% for equivalent guaranteed perfor-
mance

® Increase guaranteed performance by 30% for an equivalent thermal profile

1

1. Introduction

The main contribution of this thesis is the development of measurement
tools, which can then be used to evaluate the temperature reduction methods:

® A temperature measurement tool running on an embedded platform with
a low performance impact — Thermobench| (chapter 3)

® Benchmarks measuring thermal properties — Thermobench benchmarks
(section 3.3)

® A temperature measurement tool based on a thermographic camera using
point tracking — Thermocam-PCB| (chapter |5)

The Thermocam-PCB tool is a major focus of this thesis, as long-term
precise tracking of points on thermal image stream proves to be a nontrivial
image processing problem, especially when the tracking has to be stable
through a wide range of temperatures. Chapter 4| provides a background for
tracking methods in image processing and is used as a reference in chapter |5,
which details the Thermocam-PCB tool.

We then use these tools to detect on-chip heat sources and evaluate tem-
perature reduction methods, described in chapters |6/ and [7. The rest of the
THERMAC team also uses the developed tools for their experiments — these
will not be detailed in the thesis.

Chapter 2

Hardware platforms

B2 Target hardware platforms

As part of the THERMAC project described in chapter [I, we chose to
determine the thermal properties of two specific platforms: i. MX8QMMEK
— NXP i.MX 8QuadMax Multisensory Enablement Kit and NVIDIA

Jetson TX2 Developer Kit (Figures and [2.1D)).

Both hybrid CPU-GPU platforms have high computational performance
compared to popular embedded platforms (e.g. a Raspberry Pi) — their
technical specifications are shown in Table [2.1. They are designed for high-
bandwidth embedded applications, such as advanced video/audio processing
in industrial or automotive environments.

B 22 Thermographic camera & processing hardware

We needed a separate platform to process the output of the Workswell
Infrared Camera (WIC) (Figure using the WIC SDK [Jerl7]. We
chose the Minnowboard Turbot embedded platform (Figure , as it
can run Ubuntu 16.04 x64, which is required by the free version of the WIC
SDK. The specifications for the WIC are in Table for the Turbot board
they are in Table 2.3

2. Hardware platforms

NXP i MX8QMMEK NVIDIA Jetson TX2 Developer Kit
Chip NXP i.MX8 NVIDIA Parker Series SoC
2x Cortex-A72 @ 1.6 GHz 4x ARM Cortex-A57 @ 1.4 GHz
CPU cores 4x Cortex-A53 @ 1.2 GHz 2x NVIDIA Denver 2 64b @ 1.1 GHz
2x Cortex-M4 @ 266 MHz
GPU 4-core NXP @ 800 MHz 256-core NVIDIA Pascal @ 1.3 GHz
Memory | 3GB LPDDR4 64b @ 1.6 Ghz 8GB LPDDR4 128b @ 1.8 Ghz
Storage 32GB eMMC 5.1

Table 2.1: NXP i. MX8QMMEK & NVIDIA Jetson TX2 Developer Kit technical
specifications [NVI20][NXP20]

(b) : NVIDIA Jetson TX2 Developer Kit

(a) : NXP i.MX 8QuadMax Multisen-

sory Enablement Kit[NXP20] [NVI20]
Figure 2.1: Embedded platforms used by Thermobench
Resolution 336x256
Sensitivity 0.03 °C
Accuracy +2% or £2 °C

-25°C ... +150 °C
-40 °C ... 4550 °C
50 °C ...1000 °C
with external filter

Temperature range

Frame rate 9 Hz
Spectral range 7.5 - 13.5 nm
Communication USB3 or GigE

Table 2.2: WIC technical specifications [Wor20]

CPU cores | 2x Intel Atom E3826 @ 1.46 GHz
Memory 2GB DDRA3L 1.0 GHz
Storage 4GB (Micro SD slot)

Table 2.3: MinnowBoard Turbot Board technical specifications [Rub20)]

2.2. Thermographic camera & processing hardware

(a) : Workswell Infrared Camera [Wor20] (b) : MinnowBoard Turbot Board [Rub20]

Figure 2.2: Hardware used by Thermocam-PCB

Chapter 3

Thermobench and related tools

Thermobench is a measurement tool for running benchmark applications and
reading and recording data from on-chip sensors(temperature, frequency, etc.)
while the benchmark runs. It was created to be used in the THERMAC
project described in chapter [1| for evaluating temperature reduction methods.

I implemented the base functionality and some simple features for the tool;
it was later improved by the THERMAC team, who added several additional
features, as well as improvements to code readability, maintainability and
functionality. Some notable features are shown in Table

As well as adding features to the tool itself, the THERMAC team developed
additional tools for processing the output (CSV files) of Thermobench and
benchmarks to run on the tool — these are detailed in sections [3.2] and [3.3L

. 3.1 Thermobench

The following section details the functionality and implementation details of
the Thermobench command line tool.

3. Thermobench and related tools

Author Feature

Wait for device to cool down to given temperature
Calculate and log CPU usage

Time limit for benchmark

Log benchmark stdout to CSV

Set column name for CSV and parse benchmark

stdout for col_name=value lines, record values into column

Tibor Rozsa

Controllable fan speed
Michal Sojka | Execute additional command and parse its stdout
for specified CSV columns (STR=val format)

Table 3.1: Features of the Thermobench tool

B 3.1.1 Requirements

The main requirements for the Thermobench benchmarking tool are to:

1. Run benchmark applications

2. Measure and record the output of various sensors (temperature, frequency,
etc.) during the benchmark run

3. Save measurements in a common format — comma-separated values
(CSV)

4. Have negligible computational load (to influence measurements as little
as possible)

B 3.1.2 Design and implementation

Thermobench is designed to be an easy to use, lightweight command line tool.
It is written in C++, uses the Meson build system and has no external depen-
dencies. Its build system allows to simply cross compile it and Thermobench
benchmarks for the ARM64 architecture.

An example of a very simple use case of the tool is:

build/thermobench \
--sensor=/sys/devices/virtual/thermal/thermal_zone{0..3}/temp \
benchmarks/CPU/instr/read

3.1. Thermobench

Here Thermobench runs the read benchmark located at benchmarks/CPU /instr,
reads the internal temperature sensors while the benchmark runs, and saves
them into a CSV file with the name “read.csv” to the current directory.

A more complex example is:

build/src/thermobench --sensors_file=src/sensors.imx8 --wait=40 \
--period=500 --cpu-usage --time=600 \
build/benchmarks/CPU/instr/simd_int32_mul

Here Thermobench reads the paths to the internal sensors of the i. MX8
platform from a sensor file (see command line reference), waits until the CPU
temperature (first path in the sensor file) drops to 40 °C, runs the arithmetic
benchmark for SIMD 32bit integer multiplication, and records sensor values
and CPU usage every 500 ms for 10 minutes.

The command line reference for the tool is shown below

Usage: thermobench [OPTION...] [--] COMMAND...
Runs a benchmark COMMAND and stores the values from temperature (and other)

sensors in a

-c,

-e, ——exec=[(COL[,...])]CMD

-E,

_f’

—-column=STR

-—exec-wait

—-—fan-cmd=CMD

--fan-on [=SPEED]

.csv file.

Add column to CSV populated by STR=val lines from
COMMAND stdout

Execute CMD (in addition to COMMAND) and store
its stdout in relevant CSV columns as specified by
COL. If COL ends with ’=’, such as ’KEY=’, store
the rest of stdout lines starting with KEY= in
column KEY. Otherwise all non-matching lines will
be stored in column COL. If no COL is specified,
first word of CMD is used as COL specification.
Example: --exec ’(ambl=,amb2=,amb_other) ssh
ambient@turbot read_temp’
Wait for --exec processes to finish. Do not kill
them (useful for testing).
Command to control the fan. The command is invoked
as ’CMD <speed>’, where <speed> is a number
between O and 1. Zero means the fan is off, one
means full speed.
Set the fan speed while running COMMAND. If SPEED
is not given, it defaults to ’1°.

9

3. Thermobench and related tools

-1, -—stdout Log COMMAND’s stdout to CSV

-n, --name=NAME Basename of the .csv file

-0, ——output_dir=DIR Where to create output .csv file

-0, --output=FILE The name of output CSV file (overrides -o and -n).
Hyphen (-) means standard output

-p, ——period=TIME [ms] Period of reading the sensors

-s, —-sensors_file=FILE Definition of sensors to use. Each line of the
FILE contains either SPEC as in -S or, when the
line starts with ’!’, the rest is interpreted as

an argument to --exec. When no sensors are
specified via -s or -S, all available thermal
zones are added automatically.

-3, --sensor=SPEC Add a sensor to the list of used sensors. SPEC is
FILE [NAME [UNIT]]. FILE is typically something
like
/sys/devices/virtual/thermal/thermal_zoneO/temp

-t, -—-time=SECONDS Terminate the COMMAND after this time

-u, --cpu-usage Calculate and log CPU usage.

-v, ——verbose Print progress information to stderr.

-w, —-wait=TEMP [°C] Wait for the temperature reported by the first

configured sensor to be less or equal to TEMP
before running the COMMAND. Wait timeout is given
by --wait-timeout.

-W, ——wait-timeout=SECS Timeout in seconds for cool-down waiting (default:
600) .
-7, ——help Give this help list
--usage Give a short usage message
-V, --version Print program version

Mandatory or optional arguments to long options are also mandatory or optional
for any corresponding short optiomns.

Besides reading and storing the temperatures, values reported by the benchmark
COMMAND via its stdout can be stored in the .csv file too. This must be

explicitly enabled by -c or -1 options.

Report bugs to https://github.com/CTU-IIG/thermobench/issues.

10

3.2. Thermobench grapher tools

B 3.1.3 Results

Thermobench satisfies all requirements established in section [3.1.1l It is
capable of running benchmark applications, reading the on-chip sensor data
and storing it into a CSV file.

In the current implementation, a recording period of 1s is sufficient to
ensure a negligible computational load. This resolution is usually sufficient,
as chip temperature changes are generally fairly slow, on the scale of minutes.

B 3.2 Thermobench grapher tools

The Thermac team developed several tools for processing the CSV files
generated by Thermobench:

1. Thermobench report generator (by Tibor Rézsa)

Command line tools (graph and report generator) for automatically
creating reports summarizing a large number of benchmark runs. These
reports contain plots for different sensor types (temperature, frequency,
voltage, etc.) for each benchmark run, which are useful to have at hand
when required, but aren’t necessarily important for analysis.

The tools unfortunately cannot be used to overlay graphs of different
units (e.g. temperature and frequency) when they are of different orders
of magnitude.

Graph generator

As default, if supplied with more than 1 CSV file, the grapher plots
all columns that the CSV files have in common in separate graphs.
Additional useful options:

® Plot only some columns across files (not all of them)

® Group columns in a single CSV into graph by search strings
Example: Group all columns containing string “temp” into a single
graph with Temperature on the Y-axis

® Select column(s) for X-axis, plot all other columns with these X-axes

11

3. Thermobench and related tools

Results

All tests comparison Individual tests
X axis cpu_work_done ' time
Category — CPU
Teslgl’ y work Current Frequency Load Power Temperature
done
CPU_int_int32_changing_data_change /
pR— TP f— F——
CPU_int_int32_changing _data_ref /
i — ﬁ
CPU_int_int64_changing_data_change /
PPT Ty ﬁ

(a) : Overview — table of plots from individual benchmark runs

—— VDD_SYS_GPU_current

—— VDD_SYS_SOC_current
—— VDD_4v0_WIFI_current
—— VDD_IN_current

—— VDD_S¥S_CPU_current
—— VDD_S¥S_DDR_curent

Results
All tests comparison Individual tests
x axis cpu_work_done time
Category CPUwork done (Cument Frequency Load Power Temperature —Voltage
Tests
CPU_int_int32_changing_data_chany
—ini_int32_changing_data_change Current: CPU_int_int32_changing_data_change

CPU_int_int32_changing_data_ref
CPU_int_int64_changing data_change
CPU_int_int64_changing data_ref 250) "
CPU_simd_int32_changing_data_change
CPU_simd_int32_changing_data_ref 200
CPU_simd_int64_changing_data_change
CPU_simd_int64_changing_data_ref
Back to top. T 15

E

E

3 100

50': s
0 1 2 3 4
time (minutes)

Voltage

Bl

(b) : Detailed view of benchmark run — grouped together by sensor type (current,

temperature, etc.)

Results
All tests comparison Individual tests
x axis cpu_work_done time

sensors
CPU_voltage
Cortex_A57_0_freq
Cortex_A57_0_load
Cortex_AS57_1_freq
Cortex_A57_1_load
Cortex_A57_2_freq
Cortex_A57_2_load
Cortex_AS57_3_freq
Cortex_A57_3_load
Cortex_AS57_temp
Denver2_0_freq

_temp (°C)

Cortex_AS7_tem

Denver2_1_freq
Denver2_temp
EMC_freq
GPU_freq
GPU_load
GPU_temp 0 1 2
GPU_voltage

Cortex_AS57_temp - all tests

3 4

time (minutes)

PLL_temp

—— CPU_int_int64_changing_data_change
—— CPU_int_int64_changing_data_ref
—— CPU_int_int32_changing_data_change
—— CPU_int int32_changing_data_ref
—— CPU_simd_int64_changing_data_change
—— CPU_simd_int64_changing_data_ref
—— CPU_simd_int32_changing_data_change

~—— CPU_simd_int32_changing_data_ref

(c) : Comparison of CSV columns across all benchmark runs

Figure 3.1: 3 views of HTML generated from the report generator tool

12

3.2. Thermobench grapher tools

Gren | L&
o oenedona karat Y giun P et thernac.deveL exper it/ varkload_ois
R s e e 1

! 5)

CPULO_tew/iC : .7, . /devel /oxpe Toad¢ 2 Title

Sy LoeL 3

" T CPUO_Losdst
~ T CPUL Loadst
~ P2 LoadsZ
~ P loadsZ
" CPUS_LondsZ
~ [CPUS_loadsZ
"~ CRLO_tewp/iC
1

lecsisazizl)
PIGEIR

Figure 3.2: GUI of the Thermobench Data Visualizer

Report generator
Compiles generated graphs into a html page with navigation, with 3
main views:

B QOverview — Table of plots, each row contains plots grouping together
columns with the same unit in each CSV file (Figure [3.1a))

® Detailed view of plots from overview (Figure 3.1b)

® List consisting of plots grouping together columns of the same name

across all CSV files (Figure 3.1c)

2. Thermobench data visualizer (by Ondfej Benedikt)
Graphical tool to quickly select columns and create plots from CSV files.
This tool is useful for quick, manual construction of graphs.

Figure [3.2 shows the GUI of the program, with the following functions:

Number Function Description

1 File selection Select csv file from file browser

History of individual plotted lines — remove

2 Plotting hist
otting history lines or save plot template

Select x axis column, y axis columns,
3 Data-plotting selection label and scaling factor for data
Can subtract another column from data

Clear plot, add smoothing, add plot title,

4 Plotti i

otting options add axis titles, change line style and color
5 Figure Display of the current plot
6 Toolbar Save plot to a .png file

13

Rel. temperature [*C]

. Thermobench and related tools

test

3

Relative T, (°C]

L L L
P
0 2 4] 2 10 12 14 16 o IQ‘CXV

Time [min]
test.csv
test2.csv
—— 282-6.6e7902 g5 202m
e 30.6 - 85206667151 (2029

(a) : multi_fit (b) : plot_Tinf

Figure 3.3: Plots from Thermobench.jl functions

Thermobench.jl (by Michal Sojka)
Plotting and data processing package based on the Julia [BEKS17] lan-
guage. Useful functions:

multi_fit

In many measurements, the benchmark applies a continuous load to
the CPU/GPU for the entire duration of the experiment. The resulting
data can be fitted fairly well to a thermal model represented as a step
response of an n'" order linear dynamic system. multi_fit fits the
thermal model to the temperature data and plots both the data and the
resulting equation — see Figure [3.3al.

Useful parameters include:

® subtract — subtract a column (such as ambient temperature) from
the data

® use_measurements — produce results with confidence intervals

plot_Tinf

When comparing benchmark runs with the aforementioned thermal
model, we are often only interested in the temperatures at time infinity.
plot_Tinf visualizes these as a bar chart with error bars — see Figure

3.3bl

14

3.3. Thermobench benchmarks

. 3.3 Thermobench benchmarks

To test the thermal properties of our hardware platforms (see section , we
use a combination of standard and custom benchmarks to run our experiments.
We wrote custom benchmarks mainly for simple workloads — pure arithmetic
for an instruction-dependent workload with no memory access; memory-heavy
to to compare the effect of accesses to various cache levels and the main
memory. External benchmark sets are mainly used to simulate real-world
embedded applications.

s CPU

Instruction benchmarks

= ALU - 32/64bit, float/int, ADD/MUL/MADD/DIV

= SIMD - 8/16/32/64bit, float/int, ADD/MUL/MADD/DIV
Membench — read/write memory benchmark (by Michal Sojka)
CoreMark & CoreMark PRO benchmark set (by EEMBC)
TACLe-bench — embedded benchmarks for timing analysis (by
[EATLF16])

= GPU

CUDA instruction benchmarks — 16,/32/64bit, float/int, ADD/MUL/DIV
OpenCL — memory and compute benchmarks (by Frantisek Fladung)

B 3.4 Thermobench experiments

Collectively the THERMAC team did a large number experiments on both the
NXP i.MX8 and NVIDIA TX2 platforms. This section will only summarize

a few of my own experiments which had relevant results.

B 3.4.1 Experiment setup

The goal of the following experiments is to investigate the effect of different
kinds of arithmetic instructions on chip temperature.

15

3. Thermobench and related tools

The arithmetic benchmarks we use consist of 1024 instructions of the same
type (int32 add, double div, etc.) written in ARM assembly, nested in an
inline function which is called in a loop. This way the overwhelming majority
of the instructions in the code are exactly the ones we want to test, not jumps
or iteration in the for loop.

The topics and setup for experiments are the following;:

1. SIMD vs ALU execution

All ARM processors on our hardware platforms (see chapter 2) con-
tain a NEON module for execution of SIMD code. Although SIMD code
can perform notably more operations per time unit than sequential code,
it is worth testing whether it is actually worth using from a thermal
perspective.

2. Arithmetic instruction comparison —- ADD, MUL, MADD, DIV

This experiment investigates whether the arithmetic instructions ADD,
MUL, MADD, and DIV have differing effects on chip temperature.

3. Multiply + Add vs MADD

Given the differences in the thermal profiles of various instructions,
it is worth examining whether it is useful to use combined instructions
such as MADD from a thermal perspective.

I compare 2 benchmarks, one with 1024 MADD and one with 512
MUL and 512 ADD instructions. When plotting the number of MADDs
executed, I count them as 2 instructions worth of work to keep the
comparison fair.

4. Changing data
It is a known fact that if the data incoming to the processor ALUs
changes over time, the dynamic power consumption of the ALUs is
higher. However, we don’t know whether this causes a relevant, measur-
able change in temperature.

We run benchmarks for integer addition (both 32 and 64-bit), with
two types of input data — static and changing. The static benchmark
adds 0-s the entire time; the changing benchmark operates with 4 registers
in 2 stages:

16

3.4. Thermobench experiments

a. 1o =1r9g+7r1 =—1=04 —1 = FFFFFFFF = 00000000 + FFFFFFFF
b. r9=rs4+r3= 0= —-141= 00000000 = FFFFFFFF + 00000001
The Least Significant Bit of the 2"d input doesn’t change, so this is not

a perfect solution, but the value of all other input/output bits changes
on each step, so it should work sufficiently well for our measurement.

All experiments were conducted on the NVIDIA TX2 platform, on the

four ARM Cortex-A57 cores. The CPU was cooled down to a standard
temperature (usually 40 °C) between benchmark runs to be able to make
meaningful comparisons.

B 3.4.2 Results

I visualized and interpreted the results using the Thermobench report gener-
ator tool described in section |3.2. The graphs illustrating the experiments
are mostly slices of the originals in order to be better readable even when

they are smaller.

1.

SIMD vs ALU execution

For most instructions there is very little difference in terms of tem-
perature between ALU and SIMD instructions (see Figure |3.4a). Given
that the SIMD module does multiple instructions worth of work on a
single cycle, it is well worth to use it (see Figure 3.4b)), as more work can
be done for the same temperature increase.

Arithmetic instruction comparison - ADD, MUL, MADD, DIV

Float 32 & 64 bit

The ADD, MUL, MADD instructions are roughly thermally equivalent;
DIV is cheaper than any of them — this is consistent through both ALU
and SIMD, 32 and 64bit instructions. To keep the graph legible, Figures
3.5al and [3.5b] show 4 ALU 32bit float instructions.

ALU integer 32 & 64 bit

For ALU integer instructions, ADD instructions are the most expensive;
after that DIV instructions, and MUL and MADD instructions cause
roughly the same, smallest temperature increase (Figure 3.5d). DIV
heats up the CPU less than any other instruction (Figure [3.5¢|), however,
it also works slower, and thus has a worse ratio of performance and

17

3. Thermobench and related tools

ALU vs SIMD 32bit float instructions ALU vs SIMD 32bit float instructions

r —ALU —ALU
56 o T SIMD 56 SIMD
54
52
50
a8

46

Cortex-A57 Temperature/°C
N
[e2]

Cortex-A57 Temperature/°C

44
0 1 2 3 4 5 0.5 1 1.5 2
time (minutes) CPU work done (10~12 instructions executed)

(a) : Temperature change during run (b) : Temperature change during run
w.r.t. time w.r.t. CPU work done (total number of
additions)

Figure 3.4: ALU vs SIMD instructions 32bit float addition

temperature increase than MUL and MADD instructions. The figures
show only ALU int32 instructions, again to keep the graphs legible.

SIMD integer 8/16/32/64 bit

For integer SIMD instructions, ADD causes smaller temperature increase
than MUL & MADD. There is no instruction for SIMD division in the
ARM NEON module.

3. Multiply + Add vs MADD

As seen on Figures and [3.6b}, for ALU instructions MADD heats
the CPU up in a shorter time, and is less thermally efficient. For SIMD
instructions, MADD instructions are more efficient, although only slighly

(Figures and |3.6d)).

4. Changing data
Comparing Figures|3.7aland [3.7b| we can see that the effect of the changing
data is only relevant for SIMD instructions, for ALU instructions it is
negligible.

18

32bit float arithmetic benchmarks

58 — ADD

U 56 — MUL
% — MADD
54 i
= DIV

2

© 52

a

E 50

= 4

™~

wn

< 46

5
44

£

o

O 42
40

0 L 2 3 4 5

time (minutes)

(a) : 32bit float Time-Temperature

32bit integer arithmetic benchmarks

Cortex-A57 Temperature/°C

time (minutes)

(c) : 32bit float Time-Temperature

Cortex-A57 Temperature/°C

3.4. Thermobench experiments

32bit float arithmetic benchmarks

8 — ADD

—MuL
— MADD
54 — DIV

56

52

50

48

46

44

2 4 6

CPU work done (10712 instructions executed)

Cortex-A57 Temperature/°C

(b) : 32bit float Work-Temperature
32bit integer arithmetic benchmarks

— ADD
— MUL
— MADD
— DIV

56

54

52

50

48

46

44

2 4 6

CPU work done (10712 instructions executed)

(d) : 32bit float Work-Temperature

Figure 3.5: Arithmetic benchmark examples

B 3.4.3 Conclusion

To summarize the results of our experiments:

1. SIMD instructions cause the same temperature change over time as
ALU instructions, but do more work per cycle, so they should be used

whenever possible

2. For applications with a lot of divisions, it is advisable to use floats
over integers. ALU integer multiplications are generally cheaper than
additions — for integer SIMD instructions the reverse is true.

3. Only SIMD MADD instructions are more thermally efficient than MUL+ADD,
for ALU instructions the reverse is true

4. Data variance only has a measurable effect when using SIMD instructions

3. Thermobench and related tools

32bit float MADD vs Multiply & Add 32bit float MADD vs Multiply & Add
58 — MADD 58 — MADD
g - —— MUL & ADD g - — MUL & ADD
(o] [
3 s § 54
o o
] 52 g s
£ 50 £
3 a8 e %0
™~ ~ a8
2 2
g 44 E 46|
8 42 8 44
40 42
0 1 2 3 4 5 0 0.5 1 1.5 2
time (minutes) CPU work done (10712 instructions executed)
(a) : Time-Temperature (b) : Work-Temperature
32bit float MADD vs Multiply & Add 32bit float MADD vs Multiply & Add
— MADD 58 — MADD
Y ~—— MUL & ADD Y ~——MUL & ADD
. ~. 56|
Y 55 <
= 2 54
o o
g S 52
g 50 £
@ @ s
D‘l B 48|
< <
X 45 o 46
s ;
S 8 44
40 42|
0 1 2 3 4 5 0 2 4 6 8
time (minutes) CPU work done (10711 instructions executed)
(c) : SIMD Time-Temperature (d) : SIMD Work-Temperature
Figure 3.6: 32bit float MADD vs Multiply & Add
Static vs changing data int32 addition Static vs changing data SIMD int32 addition
60
-8 — Static — Static
%’ 56 —— Changing ‘5’ ~— Changing
I)
£ s 5 55
8 5 T
g 2
% 50 E 50
= a8 [
~ ™~
2 46 < .
3 a4)
£ £
g « 5
w0 40
0 1 2 3 4 0 1 2 3 4
time (minutes) time (minutes)
(a) : ALU Time-Temperature (b) : SIMD Time-Temperature

Figure 3.7: The effect of changing data on int32 addition

20

Chapter 4

Tracking in image processing

As mentioned in chapter [1, this chapter provides a basic background in point
and object tracking, which is required for the comprehension of the analysis
steps in chapter [5| describing the Thermocam-PCB tool.

B a1 Tracking fundamentals

Images are perspective projections of 3D points to an image plane (see
Figure . The projection is one-to-one when all objects are completely
nontransparent — we will ignore the problem of tracking transparent objects
in this chapter.

Any algorithm for tracking a set of points on nontransparent objects through
a time series of images is defined by the following two steps:

1. Initialization — Select a set of 2D points in the initial image. This set
has a corresponding 3D point set, let us call it S3. Note that S® can
only consist of 3D points facing the camera in the initial image, as we
constrained the perspective projections to be one-to-one.

2. Tracking step — In all other images: find the set of 2D points that
corresponds to the 3D point set S°.

21

4. Tracking in image processing

Figure 4.1: Projection of a side of a sphere to the image plane
3D points {I, J, K} project to 2D points {I’, J’, K’} in the image plane

For some applications, the previous definition is insufficient — we may want
to track all visible points belonging to a chosen object, not just the ones
initially facing the camera (e.g. when tracking a rotating ball — see Figure
. Although this seems a minor detail, it has large implications on the
structure of the algorithms, discussed later in this section.

Tracking algorithms have to cope with the following changing factors:

1. Camera

1.1. Position
1.2. Rotation

2. Object

2.1. Position

2.2. Rotation

2.3. (Self)Occlusion
2.4. Color

2.5. Structure (people moving, etc.)

3. Scene Illumination

All tracking algorithms (through the tracking step defined jat the beginning|

of the section)) are designed to be robust to 1.1, 1.2, 2.1 as long as occlusion

is minimal. Many algorithms are comfortable with this default constraint,
and are used in scenarios with almost no occlusion.

22

4.2. Correspondence problem and solutions

ey Ty

Image 1 » Keypoints » Descriptors
iy |-of s, |

Image 2 » Keypoints » Descriptors

Figure 4.2: Stages of the correspondence matching pipeline

Algorithms that want to track objects through appearance change and
occlusion need to iteratively update their model of the object, as they usually
do not have a concept of 3D space. However, often this results in the model
drifting away from the object, and the tracker tracking an arbitrary part of
the scene, without the possibility of recovery.

Another approach is to assume a static scene, or a scene dominated by a
rigid object. This way we do not need to solve the appearance change problem
and we can find the projective transformations between the two images based
on 3D perspective geometry. The process to find the transformation is detailed
in the next section.

B a2 Correspondence problem and solutions

The goal of correspondence matching is finding points in 2 images that are
projections of the same 3D point in space. With this information we can
estimate the perspective transformation matrix between the two images.
Correspondence matching has the form of a pipeline (see Figure |4.2)), its main
stages are:

1. Keypoint detection — detect projections of 3D points that can be easily
recognized and localized in images from different 3D camera positions

2. Descriptor construction — create a feature vector describing the keypoint
neighborhood

3. Descriptor matching — create valid pairs of keypoints between images

4. Robust model estimation — use pairs to estimate perspective transfor-
mation matrix

23

4. Tracking in image processing

(a) : Original image (b) : Image derivative
(: (d: (¢: (f): (g: (h): () 0 (k) s
Red Green Diff Red Green Diff Red Green Diff

Figure 4.3: Point neighborhoods (red rectangle) moved slightly off-center (green
rectangle), and their difference. Corners (4.3k)), differ from their surroundings in
all directions, as opposed to homogeneous surfaces 1) or edges (4.3h)).

B 4.2.1 Keypoint detection

Corner detection forms the base of almost all keypoint detectors. Corners
are easily distinguishable from their surroundings — movement in any direction
causes significant change in the point neighborhood (see Figure . This
makes them great candidates for precise matching.

Multi-scale detection is often also useful — on sufficiently small scales
every curve is a straight line, thus there are no corners to detect (see Figure
4.4a). The scale layers (Figure 4.4b)) are called octaves in the literature.

3
n

..-?FE\E

(a) : Detector size affects corner detection

[TM20a]

[l

(b) : Scale-space octaves [LYZ¥14]

Figure 4.4: Multi-scale detection

24

4.2. Correspondence problem and solutions

—-a

o . . (b) : Affine normalization by geometric
(a) : Normalization by dominant gradi- moments [JM20¢]

ent orientation [JM20D]

Figure 4.5: Keypoint normalization methods

B 4.2.2 Descriptor construction

The goal of a descriptor is to represent a point’s local neighborhood in a
compact but informative way. Normalization of that neighborhood improves
descriptor robustness, so it often precedes construction. The final descriptors
can be SIFT-like or Binary (see [Ort12]), depending on the method used.

B Normalization

To make descriptors of keypoints corresponding to the same 3D points more
similar to each other, keypoint neighborhoods from which the descriptors are
constructed are often normalized with respect to:

® Scale — Select image patch from octave stored during keypoint detection
® Rotation

1. Determine dominant gradient orientation (Figure
2. Rotate the image patch to 0 rotation

® Affine transformations

1. Approximate neighborhood with ellipse through covariance matrix
2. Compute geometric moments of orders up to 2

3. Normalize affine region (ellipse) to circular one (Figure [4.5b)

25

4. Tracking in image processing

T
/X x ’ N + f
A NENE 71N
} + A t+
PR R I R . X
< N Y A 7
LN ! Y Hoo+ »Jr {)|
= o | 2 P / v
o | 7 Al e v | 4 N
\\ N H Y 7/ ; f
NI T A o
Image gradients Keypoint descriptor (b) : DAISY [TLEF10]
(a) : 4 HOGs from 4 sections, 4x16 subsections (SIFT) sampling pattern,
[Cow04) 1 HOG per circle.

Figure 4.6: Descriptor sampling patterns. Gradients are weighed with a 2D
Gaussian with variance dependent on circle size.

B SIFT-like descriptors

Scale Invariant Feature Transform (SIFT) [Low99| is an exceedingly
influential, industry standard keypoint detection and descriptor construction
method. SIFT-like methods are either improvements on the original SIFT,
or use very similar principles of operation.

Histograms of Oriented Gradients (HOGs) are the basic build-
ing blocks of SIFT-like descriptors. They are calculated as follows:

1. Split the keypoint neighborhood into sections and those into subsec-
tions.

2. Calculate the dominant gradient orientation for each subsection.

3. (Optional) Weigh gradients based on distance from the center of
sampling. This reduces noise from the point neighborhood border.

4. Sample and group the orientations into histograms for each section.

The final descriptor is a vector containing all histograms around the key-
point. Its robustness can be further improved by additional thresholding,
normalization etc.

26

4.2. Correspondence problem and solutions

(a) : BRIS-K [LCSTI] (b) : FREAK [Orti2]

Figure 4.7: Sampling patterns for binary descriptors

B Binary descriptors

Binary descriptors are vectors of binary features (often 1 bit, 2-3 for
more complex features). The features are assumed to be independent and of
equal importance — this allows descriptors to be compared using Hamming
distance.

To generate these features, binary descriptor methods sample image in-
tensities at specific places (see Figure |4.7)) in the point neighborhood and
compare them according to their method-specific rulesets.

B 4.2.3 Descriptor matching

Descriptor matching aims to pair together descriptors which correspond to
the same 3D point in space. It is based on distance - Hamming for binary
and Euclidean for SIFT-like descriptors. It can employ strategies such as:

1. Mutually nearest — match each descriptor to its nearest neighbor
2. Stable pairing — all descriptors can only be matched once:

2.1. Rank descriptors by ascending distance
2.2. Match closest pair
2.3. Exclude all other pairs containing descriptors from the pair just

matched

3. First/second nearest — Mutually nearest + the distance ratio of the
first /second nearest neighbors must be above threshold (= 0.8 [Low04])

Matching is generally the most computationally demanding part of
the pipeline. Thus, in real-time applications it is often worthwhile to use

27

4. Tracking in image processing

X1 X2
[] @
Xi1e 4 Xy \
A‘
C1 C2

Figure 4.8: Image pairs with corresponding points ﬂm

approximate nearest neighbor algorithms instead of all-to-all comparison
to trade off some accuracy for speed.

B 4.2.4 Robust model estimation

The result of correspondence matching is a set of pairs of 2D points, each
pair corresponding to a 3D point in space (see Figure . We can use these
pairs of 2D points to approximate the geometric transformation between the
2 image planes. The transformation model is a 3x3 matrix that transforms
any 2D point in one image to a corresponding 2D point in the second image:

T2 I
y2| =M |y (4.1)
1 1

There are 3 main types of perspective transformation models to consider
in this case: Fundamental matrix, Homography and Affine transfor-
mation matrix. For each of the models, the number of point pairs required
to construct them is equal to their degrees of freedom.

28

4.2. Correspondence problem and solutions

OL

Left view Right view

R »*

(a) : Epipolar geometry of 2 image (b) : Homography — rotation, no trans-
planes, which defines the fundamental lation

matrix[Wik20]
| b ‘~~‘___]
ll:lmag:e point
= @ wm)

(c) : Homography — rotation and trans- (d) : Affine transformation [JTM20d]
lation above a plane

Figure 4.9: Perspective transformation model types

B Model types

1. Fundamental matrix — uses epipolar geometry to describe the trans-
formation between the perspective camera projection matrices of the 2
images (Figure 4.92). It is usable for arbitrary scenes, and requires 7
pairs of points for construction.

2. Homography — special case of fundamental matrix, is equivalent to the
fundamental matrix in the following cases:
a. Rotation of the camera, no translation (Figure 4.9b))
b. Translation + rotation of the camera above a plane (Figure
It is often used as a simplification of the fundamental matrix (even for

scenes not precisely described by the 2 cases above), as it only requires
4 pairs of points for construction.

3. Affine transformation matrix — describes 2D translation, rotation
and non-uniform scaling (Figure 4.9d). Used when speed is much more
important than precision, requires 3 pairs of points for construction.

29

4. Tracking in image processing

Method Main idea

LMEDS Minimize median error

RANSAC Maximize number of inliers

PROSAC RANSAC + sampling probability depends on match distance
LO-RANSAC RANSAC + local optimization on model update

MSAC RANSAC + quadratic threshold

MLESAC RANSAC 4 maximum likelihood threshold

Table 4.1: Examples of common robust model estimation methods

B Robust estimation

Most keypoint detection/description methods produce a significant number
of wrong correspondence pairs — outliers. Thus, only methods which can
deal with a large number of outliers (robust methods) are practically feasible
to use for model estimation. Variants of the Random Sample Consen-
sus (RANSAC) method and the Least Median of Squares (LMEDS)
method are common choices. Their basic structure is the following:

Input: Set of correspondence pairs
Output: Perspective transformation matrix

Method steps:

1. Sample points from dataset, create a model from them.

2. Check if the current model is better than the best one so far. The
criterion function depends on the method used:

® LMEDS: Minimal median of squared residual reprojection error

® RANSAC: Most points within reprojection error threshold (hyper-
parameter)

3. If the current model is better, update the best model
4. If number of maximum iterations (hyperparameter) is reached, stop

5. Repeat from step 1

Table 4.1 shows some methods commonly used for model estimation. Which
method is used is usually determined empirically, for each application.

30

4.2. Correspondence problem and solutions

Inliers
Sampled points 15% 20% 30% 40% 50% 70%
2 132 73 32 17 10 4
4 5916 1871 368 116 46 11
7 1.75 x10° | 2.34 x10° | 1.37 x10* 1827 382 35
8 1.17 x107 | 1.17 x10° | 4.57 x10% 4570 765 50
12 2.31 x10%0 [7.31 x10% | 5.64 x10% | 1.79 x10° | 1.23 x10* | 215

Table 4.2: Mean RANSAC iterations required for an all-inlier sample [JTM20e]

The choice of model type is a very important aspect for any method using
random sampling, both in terms of performance and precision. Table 4.2
shows that as the ratio of inliers decreases, it becomes less likely to get an
all-inlier sample. Thus, many applications cannot afford to use models with
a high number of required points (e.g. 7 for the fundamental matrix).

31

4. Tracking in image processing

(a) : Naiive location filter (b) : Gaussian location filter
(1 at object position, (naiive filter convolved with Gaussian)
0 everywhere else)

Figure 4.10: Correlation filters

B a3 Object tracking methods

This section details object tracking methods which were both considered as a
tracking solution in chapter |5, and selected as workloads to test temperature
reduction methods on in chapter |7l

B 4.3.1 Kernelized Correlation Filter (KCF) Tracker

KCF [HCMB14] is an example of correlation-based tracking, which aims
to find a correlation filter that, after applying it to the input returns 1
at the position of the object, and 0 everywhere else (Figure |4.10a)).
Requirement for such a sharp peak often leads to overfitting — some strategies
to reduce it are:

1. Convolve the reference peak with a Gaussian — smoother learning
(Figure 4.10b). The optimization problem for a Gaussian peak is:

min 2 ® w — g (4.2)

x — input image, ® — convolution operator, w — correlation filter, g —
reference location spike convolved with a Gaussian.

2. Circular matrix as emulation of a larger dataset (Figure 4.11)):
(Poz)"
C) = | o) (4.3)
(it
Here, P is a permutation matrix shifting the image by 1 pixel in the ver-
tical /horizontal direction. With this the optimization problem becomes:

min [C(@)w — g| (1.4

32

4.3. Object tracking methods

Figure 4.11: Circular matrix of image preprocessed with cosine window [JMI0]

3. Ridge regression formulation

min |C(z)w — g|| + Al (4.5)

B Kernel ridge regression

The dual form of the ridge regression formulation allows us to replace the
dot product with a nonlinear kernel, massively increasing the feature space
without compromising on performance:

min |[Ka - g| + " Ka = a=(K+A)"g (4.6)

Solving in the Fourier domain (given that K = C(k)) yields:

B Model update

KCF is not robust to object rotation or scale change. Thus, it needs to update
its model through linear interpolation:

ar = (1 —=n)ag—1 + Nnew (4.8)

The more the appearance of the object changes, the larger n needs to be.
However, increasing it also increases tracker drift.

33

4. Tracking in image processing

B Summary

The main strength of KCF trackers is their speed — given the computational
effectivity of convolutions and circular matrices in the Fourier realm, they
often are easily real-time. Their main weakness comes from the fact that
after almost any 2D transformation of the object projection (2D rotation,
affine transform, etc.) the object model needs to be modified as if it had
completely changed its appearance.

B 4.3.2 Kanade-Lukas-Tomasi (KLT) Tracker

For the KLT tracker [TK91], the main steps of tracking defined in the
beginning of chapter 4 are:

1. Imitialization: Find keypoints inside object bounding box. The neigh-
borhoods of these keypoints will be called template patches.

2. Tracking step: For each image and keypoint iterate:

a. Calculate the difference of the template and current patch. The
initial current patch is the neighborhood of the point from the
current image with the coordinates of the keypoint from the previous
image.

b. Compute gradient of difference, estimate displacement
c. Move towards gradient, update coordinates of current patch

d. Repeat from a. until convergence

The tracked points can be used to calculate a [perspective transformation
model for the movement of the object. As the number of tracked points is
usually low compared to pixels in the image, this method is an example of
sparse optical flow — see [SES10].

The KLT tracker sits in the category of object tracking algorithms that
only track points initially facing the camera and are not robust to object
appearance change (see section 4.1)). It is thus robust to non-occluding object
rotations and scale change. However, it is not suitable for long term tracking
even for scenes with little occlusion — once a keypoint is lost, it is lost forever.

34

Chapter 5

Thermocam-PCB tool

The main purpose of the Thermocam-PCB tool is to read, process and publish
the image stream data from the Workswell Infrared Camera (WIC) —
see section Using an infrared camera complements the Thermobench
tool (chapter 3) by allowing us to:

1. Measure the temperature of chips external to the main SoC

2. Validate our measurements made with Thermobench

The tool is designed to measure the temperature on a Printed Circuit
Board (PCB). Most of its features can be used for any scene, but the
tracking feature is limited to 2D static scenes, or mostly planar, rigid objects
which dominate the scene and have a homogeneous (for the infrared camera)
background behind them. A PCB lying on a room-temperature table is an
example of such a scene. This limitation enables the tracker to use simpler
models of the scene and achieve better performance and precision because of
that.

In the THERMAC project, the tool is used to monitor the i.MX8 platform,
and runs on the Minnowboard Turbot platform — details in chapter

35

5. Thermocam-PCB tool

B 51 Requirements

The Thermocam-PCB tool needs to satisfy the following functional and
quality requirements:

B 5.1.1 Functional requirements

® Display the WIC image stream

® Enable the user to enter Points Of Interest (POIs) anywhere on the
image and display their temperature

® Save and Import POIs and the current WIC image into JSON file
® Track POIs across the image stream

® Publish WIC image stream and POIs through a webserver

B Record video

B Set recorded video as input

B 5.1.2 Quality requirements

1. Precise temperature measurement (£0.5°C)

2. Precise point tracking (max 2-3px error)

3. Real-time computation on an embedded platform (<400 ms)
4. Detectable & recoverable failure modes

5. Robustness to local & global change of temperature over surfaces with
variable emissivity

36

5.2. Related work

Figure 5.1: Cooldown of checkered pattern made of low thermal emissivity
(= 0.03) aluminium foil and high thermal emissivity (= 0.95) electrical insulating
tape

. 5.2 Related work

Most functional requirements of the tool (e.g. displaying the image stream
through a webserver or recording video) have straightforward solutions and
implementations. The only functionality that required research into scientific
literature is point tracking through the thermal image stream.

Most relevant publications solving the problem of tracking in thermal
imaging use image registration, usually through the correspondence matching
pipeline (see section to rectify the images either to a top-down or the
initial viewpoint - e.g. [and17],[RLSB19],[SC19],[DC19],[CLmS16], [KLB*17).
Object tracking algorithms such as KCF and KLT (see section are used
more rarely — [CH14], [AN17]. Some publications use FFT phase correlation

to rectify small movements, such as vibrations — [HGMLHM12],[Mod11].

The publications mentioned above do not solve the problem of the tem-
perature of the tracked object changing over time, except for [CH14], which
circumvents the problem by masking the parts of the image where the tempera-
ture changes significantly. [and17] uses Contrast Limited Adaptive Histogram
Equalization that may help in the matter but it is used more for improving
contrast rather than counteracting temperature change.

Unfortunately, to normalize thermal images through temperature change
we cannot use algorithms used to compensate for lighting changes in visible-
light images. Surfaces with low thermal emissivity have more or less constant
intensity through temperature change compared to high emissivity surfaces.
This means that the contrast between two surfaces may disappear and even
switch around — see Figure Publications that attempt the registration
of thermal and visible-light images might help in this problem: [JPRF07]
proposes texture filters to normalize both types of images to have a unified
visual appearance.

37

5. Thermocam-PCB tool

N 53 Design & Analysis

As discussed in the previous section, point tracking was the only feature of
the tool that required research into the literature. It was also the only feature
that required thorough analysis. The previous section established that most
publications in the relevant literature use correspondence matching based
image registration or object tracking methods, and for most of them the
temperature of the tracked objects does not change significantly.

When running benchmark applications testing the thermal properties of
the chips on our hardware platforms (see section 2.1)), the temperature of the
scene changes globally (the entire PCB heats up) and also locally (the SoC
heats up more than its surroundings). There are two major ways to solve this
problem:

1. Use a tracking algorithm robust to global and local tempera-
ture change
Such tracking algorithms would require some way to ensure robustness to
object appearance change. As discussed in the previous section, methods
robust to lighting change cannot be successfully used to compensate for
changes in thermal images. Thus, we need robustness to any change in
object appearance.

Such algorithms exist, however, as discussed in section 4.1|, they in-
troduce drift, which can lead to unrecoverable failure. As one of the
quality requirements established in section |5.1] is the ability to recover
from a failure state, such methods are not usable.

2. Preprocess the image for the algorithms that work on non-
changing temperatures
As previously mentioned, there is an array of solutions that work in scenes
where the temperature of objects does not change significantly. If we can
find some method of preprocessing the images such that they would be
normalized for global and local temperature changes sufficiently for the
algorithms to be able to use them, we could satisfy all the requirements
for the tool.

Only the second option could viably keep all requirements from section 5.1,
so that was the one we chose.

38

5.3. Design & Analysis

B 5.3.1 Choosing the preprocessing method

The ideal preprocessing method would normalize the image for temperature
change such that images from the same viewpoint would be indistinguishable
with any change in object temperature, while preserving as much visual
information as possible for the tracking algorithms to use.

In reality we are unlikely to find such a preprocessing method, however,
we can compare them according to how much detail they remove and how
well they eliminate global and local temperature changes. We tried a few
methods, most of which were used in the relevant literature:

® Canny edge detection (Figure 5.2b)
Images from the same viewpoint are similar, but removes way too much
detail.

® Texture filters (Figure [5.2¢))
Used in [JPRT07], as a preprocessing step for the registration of color
and thermal images. Preserves the similarity across temperatures, but is
low on details.

= Histogram equalization (Figure 5.2d)
Used in [DC19], compensates global temperature changes well, amplifies
local ones. Retains details well.

® Contrast Limited Adaptive Histogram Equalization (CLAHE)
(Figure 5.2¢))
Used in [and17]. Local normalization, compensates for both global and
local temperature change well. Preserves details, but tends to amplify
input noise.

We chose CLAHE, as it preserved the most details while providing good
local normalization. As CLAHE amplifies noise, we apply median filtering
before using it on the image, and then use unsharp masking to reduce the
blur introduced by the median filter. The result can be seen on Figure [5.2f,

B 5.3.2 Choosing the tracking algorithm

Section |5.2| mentions several tracking algorithms that have been successfully
used on thermal image streams. The list below details their limitations:

39

5. Thermocam-PCB tool

(a) : Original image (b) : Canny edge de- (c) : Texture filter
tection
- T TN T——

e B

(d) : Histogram (e) : CLAHE (f) : Median filter,
equalization CLAHE,

Unsharp masking

Figure 5.2: Preprocessing techniques

1. |Object tracking algorithms|

L] - Template update required for scale change and rotations,
which introduces drift

] - Loses points over time, leading to unrecoverable failure

2. |Correspondence matching & perspective transform estimation

® Requires the scene to be rigid (true when most of the scene is
occupied by the PCB)

® Consecutive images are treated as independent

Immune to drift & implicit recovery from failure

Discards a large amount of information (successive frames are
very similar in practice)

3. [FFT phase correlation
Can only be used for very small movements, such vibrations.

We chose correspondence matching, as it satisfies the requirements
better than the presented alternatives. It can recover from failure states, is
fairly precise and can be implemented to run in real-time. Its main drawback
is that it doesn’t utilize the fact that successive frames are similar.

40

5.3. Design & Analysis

B Choosing the perspective transformation model for correspondence
matching

After we chose correspondence matching as our method of tracking, we needed
to decide what kind of perspective transformation we need to approximate
in our application. We established 3 transformation model types in section

4.2.4

1. [Fundamental matrix

2. Homography’
3. |Affine transformation matrix!

Given that the background behind the PCB is featureless for the thermal
camera and all points lie on the PCB, which is a rigid, mostly planar object,
any movement of the PCB on the table can be described by an equivalent
camera transformation. We can thus describe the setup roughly as the
movement of a camera over a plane, which is one of the special cases where
the fundamental matrix is equal to a homography.

Using a homography also allows much faster computation (see ,
because it requires only 4 points to construct. We did not use the affine
transformation model, because translation, rotation, scale and shear simply
does not cover all types of transformations relevant for our use case.

image 1 image 2

Mm’ surface

Figure 5.3: Camera movement over plane, described by homography

41

5. Thermocam-PCB tool

Median filter)
Image 1 —» CLAHE
Sharpening |

Matching H Homography ‘
I (FLANN) (RANSAC)
Median filter Keypoints Descriptors
(FAST) | | (ORB)

Keypoints Descriptors
(FAST) [| (ORB)

Image 2 —» CLAHE
Sharpening |

Figure 5.4: Initial correspondence matching pipeline

B 5.3.3 Tuning the chosen tracking algorithm

There are many variants of the correspondence matching pipeline (described
in section 4.2)), multiple methods can be used for all of the pipeline stages, each
with their own hyperparameters. Both the choice of the method and hyperpa-
rameters for the given method highly influence how well the pipeline performs.

Initially, we arbitrarily chose some popular methods for the pipeline stages
with their default hyperparameters (see Figure [5.4)). Except for the simplest
transformations (identity, small translations), the results were inaccurate
and changed significantly (+10 px) from frame to frame. Thus, it seemed
worthwhile to search for the best possible combination of methods and hyper-
parameters in the pipeline for our specific application.

We considered using some of the many method comparison studies (e.g.
[JC16], [BB17]) to at least select the best method combination for the pipeline.
However, these studies use visible-light images with a variety of scenes for
testing, while we needed optimal parameters for a thermal image stream of
a PCB — it is unlikely that the optimal pipeline is the same for those two
scenarios.

Table [5.1) shows all methods and hyperparameters that we searched for all
pipeline stages. We first created a dataset on which we could test the pipeline
variants (detailed in the next section). Then, for each pipeline stage, we froze
the parameters for all other stages and searched for the best hyperparameters
for that stage. The only exception in this were the keypoint detection and
descriptor extraction stages, which we optimized together, trying out all
possible method combinations.

By optimizing the pipeline stages separately it was likely that we would
only get to a local optimum of the method and hyperparameter combinations.
However, it was computationally infeasible to optimize all stages at the same
time, and we could still significantly improve tracking precision, as shown by
the [results of the hyperparameter search at the end of this section.

42

5.3. Design & Analysis

Pipeline stage Method Hyperparameter
Median filtering Kernel size
. Threshold
Preprocessing CLAHE Kornol size
Unsharp masking Kernel size

Detection threshold

FAST Non-max Suppression
Detector Type
BRISK Threshold
Octaves

FAST Threshold
Max Features
ORB Octaves
Octave scale factor
Detector size
Delta
MSER Minimum area
Maximum area
Threshold
AGAST Non-max Suppression
Detector Type
Threshold
Octaves
Layers per octave
Diffusivity type

Keypoint detector

AKAZE

BRISK Patch size
Orientation normalization
Scale normalization

FREAK Pattern scale
Octaves
Descriptor extractor ORB Patch size
Descriptor bytes
Rotation invariance
LATCH Mini-patch size
Gaussian blur sigma
AKAZE 0
Matching First/Second threshold
Threshold
RANSAC Confidence interval
Maximum iterations
Model estimation Threshold
PROSAC Confidence interval
Maximum iterations
LMEDS 0

Table 5.1: All pipeline stages, methods and hyperparameters searched

43

5. Thermocam-PCB tool

Parameter Max/Min Meaning
Lz, ty +0.25x image width,height | Translation in x,y direction
10) +3 Rotation angle around center
Sz, Sy 1.2/0.8 Scale in x,y direction
shy, shy +0.1 Shear in x,y direction
P1, P2 +0.0003 Projective parameters

Table 5.2: Homography parameter ranges and descriptions

B Dataset

The input dataset for the correspondence matching pipeline consists of pairs of
images that simulate camera movement over the PCB — one is a reference, the
other is transformed by a homography. The homographies are constructed
from Euclidean, Scale/Shear and Projective transformation matrices (see
[Thil7]):

cos(¢) —sin(¢) ty| | sz shy 0|1 0 0O
H =ESP = |sin(¢) cos(¢) ty| |shy s, 0] |0 1 0 (5.1)
0 0 110 o0 ofllp p 1

The meaning of the matrix parameters, as well as their min/max values
are detailed in Table [5.2. We set the min/max parameters by hand, by
looking at the images transformed by the homographies and choosing ones
that reflect transformations that we would realistically see when moving the
camera around.

To generate a random homography for the dataset, the program samples
parameters from a uniform distribution with min/max values detailed in
Table 5.2 and constructs the matrix according to equation [5.1.

The main advantages of generating the set of image pairs this way are:

® Closely controllable complexity — changing homography parameters
allows setting exactly what kind of projections we want

® Arbitrary size — many possible pairs from the image set

® Kasy result checking — we have a reference to compare pipeline results to

44

5.3. Design & Analysis

L. < e
" ‘o “uF
— L k

(a) : Original (b) : Transformed 1 (c) : Transformed 2

w wE

Figure 5.5: One original and two transformed images from the small image set

(a) : Unchanged (b) : Transformed 1 (c) : Transformed 2

Figure 5.6: One unchanged and two transformed images from the large image set

We created two datasets of image pairs, one smaller for rapid testing, and
a second larger one for more thorough, temperature-invariant testing:

® Small dataset

Input: 5 reference images of the board from different angles and
with different temperatures

Output: Each of these 5 images transformed by 3 random homo-
graphies each — 15 image pairs (see Figure

8 Large dataset

Input: 220 images of the board, from the same angle, with different
temperatures — sampled through a long time period with workloads
periodically applied to the SoC, shuffled afterwards

Output: First 20 images unchanged, the other 200 transformed by
random homographies — 200 image pairs, 10 transformed for each
unchanged image (see Figure [5.6)

Any pair of unchanged-transformed images can be of very different
temperatures — the optimal pipeline variant has to be capable of
handling temperature change well

45

5. Thermocam-PCB tool

B Metric of comparison

To compare two pipeline variants, we need a metric by which we can compare
them. The requirements we set for the metric are the following;:

Measure the quality of the pipeline variant — how close is the
homography found to the reference homography.

B Higher score = better variant — it is visually more convenient to
look for maxima on the graph than minima

Capped minimum — improves visualization, low and extremely low
scores are equally unusable for us

Independent of the model estimation stage.

In the initial pipeline, I used the RANSAC] algorithm for the model
estimation stage. Threshold, its most important parameter heavily
depends on the number and quality of correspondence pairs found,
which in turn heavily depends on the keypoint and descriptor method
parameters. Thus I either needed to find the optimal RANSAC threshold
for each parameter combination (computationally infeasible), or find a
metric that does not use RANSAC or model estimation at all.

The metrics I tried were:

1. Inverse mean distance of matched descriptors

Its main strength is that it can be used entirely without the model
estimation stage. It is a fairly good predictor of keypoint quality —
the maxima are at parameter combinations where both the number of
keypoints and projection error are fairly small. However, it heavily de-
pends on the size of the image patch from which the descriptor
is calculated. The smaller the patch, the more similar descriptors are —
this makes mean distance unusable as a metric for optimizing descriptor
parameters.

2. Capped negative mean projection error

1

’P‘ Z HHrefp - Hnepr 7500 (52)

peP

€ = —Inax

Here P is a grid of points over the image, H, is the reference homography
and H,,¢y, is found with LMEDS, LMEDS is a nonparametric method and

46

5.3. Design & Analysis

5
< 20

o

a

o

3 15

[}

Q

=1

> 10

2

o

3 os

(1)

0
éﬁ
20
30
g BRys, %
3 K p, 50
FAST Parameters "o Aehsppe 0w
(a) : Keypoint view — maximum at the (b) : Descriptor view — distance de-
minimum number of keypoints where pre- creases with patch size

cision is still high

Figure 5.7: Inverse mean distance of matched descriptors

o
& 4 0
R o = [
5 & o 8 5
S g -
’\’ g ; g 100 7]
SO g) oy £
e L & s B - k]
AR . Lo B 3¢ g
0 "% 0 S s P 5
Sy § 3 —300 5
% - ' v
E 4 =
—400 B
Lsoo >
% —-500 z
0 w 0.6 0.8 10 12 14 16 18 2.0
o 100 200 300 400 500 600
FAST Parameters BRISK Patch size
(a) : Keypoint view — precision high (b) : Descriptor view — precision falls off
when the number of keypoints is large for patch sizes smaller than 0.8

Figure 5.8: Capped negative projection error

can thus be used independently of the pipeline preceding it. It requires
more than 50% of inliers to be effective, which is not ideal, as there
may be better method variants with smaller inlier ratios. Nevertheless, I
found it a reasonable compromise, as it allows me to minimize the actual
error of point transformations, which is what we want to minimize in
tracking. Having the projection error in pixels also makes results easily
comprehensible.

The maximum error is capped at 500, which I chose arbitrarily to keep
the error for faulty homographies large, but within some bounds — any
method with a mean projection error of 500 pixels is entirely unusable
anyway.

In all graphs in this section, color signifies computation time:
blue (low) to yellow (high).

47

5. Thermocam-PCB tool

[Comparing pipeline variants

The way I chose to compare the pipeline variants when looking at a range of
parameters is to simply loop through the range with some step (e.g. range
of (1,100) with a step of 1) and plot the scores for each combination. If I
wanted to look at how parameters interact, I tried all combinations with the
ranges of all parameters.

Figure [5.8 shows the results when varying parameters for the FAST and
BRISK methods. Table [5.3| shows the ranges of parameters. On the plot, key-
point parameters 1-100 correspond to threshold (1-100), nonmaxsuppression
off, detector size 5/7; parameters 101-200 correspond to threshold (1-100),
nonmaxsuppression on, detector size 5/7, etc.

Method Parameter Begin | End | Step
Threshold 1 100 1
FAST Nonmaxsuppression | Off On 1
Detector size 5/7 19/16 | 2/4
BRISK Pattern scale 0.5 2 0.1

Table 5.3: Initial parameter ranges for the FAST keypoint detector and BRISK
descriptor extractor methods

Testing through parameter combinations was much more expensive than
to optimize each parameter separately while freezing others at the default
value, but provided much more information on how the parameters affect
each other.

I considered using something like gradient ascent to get to the local maxima,
as it would have saved a lot of resources. However, I didn’t use it in the end,
for the following reasons:

® The score function is not guaranteed to be smooth with respect to the
parameters

® The global maximum may be noisy and not unique — there may be lots
of equivalently good parameter combinations that we discard, but may
have other advantages (e.g. faster runtime)

B [gain no general insight into the effects of parameter combinations, which
can be useful for better understanding what the method parameters do,
checking for mistakes, and for later ideas for improvement.

48

5.3. Design & Analysis

Pipeline stage Method Parameter Initial value | Final value
Preprocess Median filter Kernel size 3 3
CLAHE Threshold 12 18
Kernel size 32 8
Unsharp masking Kernel size 3 7
. FAST Threshold 40 18
Keypoint detector Nonmaxsuppression On Off
Detector size 9/16 9/16
Descriptor extractor ORB Patch size 31 N/A
BRISK Pattern scale N/A 1.8
Matching First/Second ratio 0.9 0.88
Model estimation RANSAC Threshold 1 6
Confidence interval 0.995 0.99
Max iterations 2000 6000

Table 5.4: Initial and final pipeline methods and parameters

80

60

40

20

0 100 200 300 400

Projection error

(a) : Initial pipeline errors

300

200

100

150

100

0

500 0 100 200 300

400 500

Projection error

(b) : Final pipeline errors

0 2 4 6 8 10 12
Projection error

(c) : Final pipeline er-

rors — zoomed in leftmost
column

Figure 5.9: Projection error histograms

B Hyperparameter search results

When comparing the projection error histograms (Figure 5.9) of the initial and
final pipeline on the large dataset, we can see that searching for the optimal
parameters and methods was very well worth it. With the initial pipeline, most
homographies found were wrong, while with the final parameters there were
only a few (3) wrong homographies, and the mean error for the overwhelming

majority of cases was within 2 pixels.

The comparison of the initial and final correspondence matching pipeline

can be seen in Table [5.4.

49

5. Thermocam-PCB tool

. 5.4 Implementation

Thermocam-PCB is a command-line tool implemented in C++, using the
Meson build system. It uses the WIC SDK for communicating with the
Workswell Infrared Camera, the OpenCV library for image processing and
visualization, and the Crow open-source library for running a webserver.

The thermal image is read using the WIC SDK as 16-bit unsigned raw data,
which is in a linear relationship with Celsius temperature values. To visualize
it, the 16-bit raw data temperature is recalculated into 8-bit pixels using
a fixed range, such that 0 corresponds 15 °C and 255 corresponds to
120 °C. Thus, if the temperature of the board is below 20 °C, the image is
very dark and the tracking feature is likely to fail.

B 5.4.1 Requirements & Compilation

The requirements for running the tool are:

License file for the Workswell Infrared Camera

WIC SDK (installs and uses the eBUS SDK)

32/64b x86 Linux, preferably Ubuntu 16.04, for maximum compatibility
with the eBUS SDK

OpenCV 2.4 (default version for Ubuntu 16.04)

boost and pthread libraries

To compile the program, run:

meson setup build
ninja -C build

50

5.4. Implementation

(a) : View 0 (b) : View 1

0: Point 0=54.94 C
1: Point 1=52.88 C
2: Point 2=79.24 C

(c) : View 2

Figure 5.10: The three possible views of Thermocam-PCB

B 5.4.2 Usage

To simply show the image stream from the WIC, ensure that the camera
license file (.wlic file) is in the the current directory, and run the application
without any arguments:

build/thermocam-pcb

You can exit the application either by pressing the Esc key, or by press-
ing Ctrl4C in the terminal.

To enter and save points into a . json file, call the application with the
-e argument (build/thermocam-pcb -emy-points.json) and click on the
image. After some points have been entered, you can switch between three
possible views (shown on Figure by pressing Tab.

You can delete entered points with the Backspace button and save your
entered points by exiting the program. Saved points can be imported using
the -p argument, which you can call together with -e to edit your saved
points.

o1

5. Thermocam-PCB tool

Thermocam-PCB

Figure 5.11: Camera image with POI published on the webserver

Saving points also saves the current camera image with them, which the
tracker uses as reference. It is recommended that the PCB be turned on
when this happens (so the reference image isn’t too dark) for better tracking
performance.

To turn on the webserver, call the tool with the -w argument. The webserver
can be accessed on port 8080 — Figure shows the web interface of the
tool. Querying ip-address:8080/temperatures.txt returns the list of POIs
and their temperatures in “name=value” format. This is the format that
Thermobench understands, thus the two tools can be used together.

It is possible to monitor tracking performance, by querying
ip-address:8080/position-std.txt, which returns the mean rolling stan-
dard deviations of POI positions. During normal operation, these will be
below 2-3 pixels, however, if tracking fails, the points will move around
randomly on the image and the standard deviations will be really high.

52

5.4. Implementation

B 5.4.3 Command line reference

Usage: thermocam-pcb [OPTION...] [--] COMMAND...
Displays thermocamera image and entered points of interest and their
temperature. Writes the temperatures of entered POIs to stdout.

-c, ——csv-log=FILE

-d, --delay=NUM

-e, ——enter-poil[=FILE]

-1, —-license-dir=FILE

-p, ——poi-path=FILE

-r, ——-record-video=FILE

-s, ——-show-poi=FILE
--save-img-dir=FILE

--save-img-period=NUM

-t, —--track-points
-v, ——load-video=FILE

-w, ——webserver

-7, ——help
--usage

-V, —--version

Log temperature of POIs to a csv file instead of
printing them to stdout.

Set delay between each measurement/display in
seconds.

Enter Points of interest by hand, optionally save
them to json file at supplied path.

Path to directory containing WIC license file.
"." by default.

Path to config file containing saved POIs.
Record video and store it with entered filename
Show camera image taken at saving POIs.

Target directory for saving an image with POIs
every "save-img-period" seconds.

"." by default.

Period for saving an image with POIs to
"save-img-dir".

1s by default.

Turn on tracking of points.

Load and process video instead of camera feed
Start webserver to display image and
temperatures.

Give this help list

Give a short usage message

Print program version

Mandatory or optional arguments to long options are also mandatory or optional
for any corresponding short optionms.

Requires path to directory containing WIC license file to run with camera.

Controls:

Tab - Change view (Full | Temperature only | Legend)
Mouse click (left) - Enter point (only with --enter-poi)

Backspace - Remove point (only with --enter-poi)

Esc - Exit program

Report bugs to https://github.com/CTU-IIG/thermocam-pcb/issues.

53

5. Thermocam-PCB tool

Figure 5.12: Smoothed heatmap of a single frame from GPU 32-bit float addition

. 5.5 Results

If we compare the functional requirements of the tool established in section
to the implementation described in the previous section, we can see
that all the functional requirements of the tool have been met. Thus, this
section only discusses how Thermocam-PCB meets its quality requirements,
established in section

1. Precise temperature measurement (+0.5°C)
The state a general accuracy of +2 °C. However, the WIC
SDK documentation [Jer17] states that measurement accuracy can be
improved by calibrating the camera using Flat Field Correction(FFC).
We set the camera to do FFC periodically every minute to ensure precise
measurement — the FFC takes 1-2 seconds, thus it seemed like a reason-
ably small period to me.

To test the accuracy of thermocamera measurements, we ran a GPU
benchmark (32-bit float addition) while simultaneously recording with
Thermobench and Thermocam-PCB.

For simplicity, we manually selected a point which seemed to lie in
the middle of the heat source (GPU) on the thermal image (see Figure
, which was smoothed to reduce noise. Figure shows the
temperature of that point over time, aligned in time with the GPU
temperature from Thermobench. We can see that the plots are pretty
close all along, but we can see the magnitude of the error more clearly on
Figure The error stays within 2 °C, and is smaller for a significant
part of the measurement.

o4

Temperature (°C)

95|

90|

85|

80|

75|

7 [

65|

60

5.5. Results

GPU temperature - camera and internal sensor difference
GPU temperature - camera vs. internal sensor recording

—— Internal

L aw— Camera

Temperature difference/°C

o 0.5 1 1.5 2 25 3
time (minutes)

. time (minutes)
(a) : Temperature over time

(b) : Temperature difference

Figure 5.13: Thermobench & Thermocam-PCB measurement comparison

The differences can be explained not only by the inaccuracy of the
camera — the GPU temperature sensor may be located somewhere else
than the location we chose. However, even with this simple setup, we
can see that the difference between the two measurements is small.

We did not manage to reduce measurement error from 2 °C to 0.5 °C,
however, from the previous example it is evident that the camera mea-
surements can be used in conjunction with and to complement internal
sensor measurements.

Precise point tracking (max 2-3px error)

As discussed in section when tested on a large set of transformed
images with various local temperature changes, the overwhelming ma-
jority of homographies found had mean projection errors below 2 pixels.
Thus, this constraint is satisfied for most used temperatures, and only
fails on temperatures of around 15-20 °C where the image quality suffers
considerably.

Real-time computation on an embedded platform (<400 ms)
Although Thermocam-PCB works with a computational time of around
350 ms, which allows it to service around every 3'¢ frame. This makes it
real-time by our definition, so this requirement is satisfied.

Detectable & recoverable failure modes

The main failure mode of the algorithm is when the input images get
so dark that there is very little image depth to select good features (see
Figure . As input images are treated as independent, recovery
from this state is implicitly in the algorithm, when the PCB heats up a
bit. In this state, the homographies found exhibit high error. As most
of the time the PCB will be static, we can monitor this through plotting

55

5. Thermocam-PCB tool

Thermocamera point position stddev - by day

pixels
N

s M
JRPEVRGUNrY IS R T WYL\ PV S V0 08 O 1. DI NS LR
Tue 06:00 Tue 12:00 Tue 18:00 Wed 00:00 Wed 06:00
Cur Min Avg Max
m CPU 394.85m 106.30m 825.29m 16.06
o Mem 467.75m 90_46m 2.09 78.28
Table 335.85m 179 15m 571.97m 9.63
Board 289 86m 186 69w 453 64w 4.66
Last update: Wed Jun 17 09:25:10 2020

(b) : Standard deviation of point posi-
tions over a one day period.

The PCB got too cold and thus the im-
age too dark Tuesday 23:00-00:00.

(a) : Image too dark for proper function

Figure 5.14: Failure mode for tracking

the rolling standard deviations of point positions, as seen in Figure
With these in place, failure is both detectable and recoverable.

5. Robustness to local & global change of temperature over sur-
faces with variable emissivity
The performance of the solution on the larger dataset (see section ,
which has transformed images of various global and local temperatures
is satisfactory, discussed in point 2. The solution fails for very low tem-
peratures, where image quality degrades, discussed in point 4. However,
those temperatures only occur when the board is turned off, which is not
a state in which we are interested in measuring.

56

Chapter 6

Determining heat sources on chip for
different workloads

When we design algorithms to lower chip temperature, it is useful to know
which parts of the chip heat up more for which workloads. Knowing the
locations of these heat sources allows us to heat up the chip more uniformly
(e.g. by combining workloads in the right way), ensuring better heat spread
and lower overall temperature.

This chapter describes a method for determining on-chip heat sources from
videos of a chip being under a single type of workload — CPU arithmetic,
GPU arithmetic, CPU-based memory-bound. After determining heat sources
for each workload separately, and we can compare them and classify them
as workload-specific, results of noise, or from an area generally used by all
workloads.

The method used to locate heat sources in this chapter is inspired by the
one described in [SZAT19]. However, we use Gaussian smoothing instead of

discrete cosine transform for noise filtering and histogram maxima instead of
k-means for determining heat source locations (detailed in section |6.4)).

B 6.1 Hardware setup

In this chapter we use an NVIDIA Jetson TX2 (see section with its heat
sink removed to run our workloads during the experiments. We positioned

o7

6. Determining heat sources on chip for different workloads

(a) : WIC looking at the Jetson (b) : Image of the Jetson board captured
board, chips covered with black insulat- by the WIC, visualized with the JET
ing tape colormap

Figure 6.1: Hardware setup — external view and view from WIC

the WIC thermal camera (see section to look at the Jetson board with
the TX2 System-on-Chip (SoC) and two RAM chips centered in the picture.
The camera was looking at the board from a slightly tilted angle to reduce
thermal reflections and from as close a range as the it could keep focus.

The SoC and the two RAM chips were covered with black insulating tape
to increase their thermal emissivity to approximately 0.95. High emissivity
is essential for both recording precise temperatures and detecting small
differences in on-chip temperature. The setup and an example image captured
with the setup are shown in Figure (6.1

B 6.2 Experiment setup

The experiments were set up to answer the following questions:

1. Isit possible to locate individual CPU cores using the thermal recordings?

2. Is it possible to locate GPU streaming multiprocessors using the thermal
recordings?

3. Is is possible to tell the difference between L1 cache/L2 cache/main
memory accesses when looking at the SoC?

4. How does memory traffic influence DRAM chip temperature?

o8

6.2. Experiment setup

Arithmetic benchmark Runs on
core 0
ARM Cortex-A57 CPU |21
core 2
32bit floating point addition core 3
NVIDIA Denver 2 |20
core 1
All CPU cores
core 0
ARM Cortex-A57 CPU | <2¢ L
core 2
32bit integer addition core 3
NVIDIA Denver 2 |20
core 1
All CPU cores
32bit floating point addition NVIDIA Pascal GPU

Table 6.1: Arithmetic benchmarks run for determining heat sources

Memory benchmark Runs on

16KB (L1 cache)
Memory sequential access | 512KB (L2 cache)
12M (Main memory)
16KB (L1 cache)
Memory random access 512KB (L2 cache)
12M (Main memory)

ARM Cortex-A57 CPU core 0

Table 6.2: Memory benchmarks run for determining heat sources

To answer these questions, we selected a small set of arithmetic and memory
benchmarks, shown in Tables 6.1/ and |6.2l 'We used both Thermobench and
Thermocam-PCB for measurement — Thermobench ran the benchmarks and
recorded on-chip sensor readings, and Thermocam-PCB recorded a thermal
video of the benchmark run. Only the thermal videos were used to determine
heat source locations.

The TX2 was left to cool down between experiments until the Cortex-A57
on-chip sensor showed 55 °C, which was the idle CPU temperature. This
ensured the independence of benchmark runs.

99

6. Determining heat sources on chip for different workloads

. 6.3 Theoretical basis

B 6.3.1 The heat diffusion equation

We use the equation for heat diffusion in solids [BLIDIT] as the basis for
determining heat source locations:

vy 42 LT

— 1
ko0t (6.1)

Here, T is thermodynamic temperature, ¢ is the rate of thermal energy
generation in the medium, k is thermal conductivity, « is thermal diffusivity,
and t is time.

Heat sources are locations of local heat production maxima on chip — thus
we are looking for local maxima of ¢:

(6.2)

q:k<V2T+ mT)

a Ot

The locations of heat sources (z,yp) are thus:

10T
(xh,yn) = argmax ¢(x,y) = argmax k <V2T(CE, y) + aa(@?y)> (6.3)

We assume thermal conductivity, k, to be constant across the chip and in
time, thus multiplying with it does not affect the location of maxima:

(zh,yn) = argmax ¢(x,y) = arg max (—V2T(az7 y) + ;W) (6.4)

When looking at a chip with a thermal camera, we know the thermodynamic
temperature at each pixel position for each frame, thus we can calculate both
the Laplacian and the time derivative. Thus the only unknown parameter is
« — thermal diffusivity.

60

6.3. Theoretical basis

B 6.3.2 Determining thermal diffusivity

The thermal diffusivity of CMOS chips depends on the thickness of the various
layers of a chip, and their thermal properties [KM09]. These parameters are
usually only known to the manufacturer, and vary between chips. Thus, it is
hard to get a precise estimate of diffusivity from tables of material constants.

Studies aimed at measuring thermal diffusivity on CMOS chips ([KMO09]
[Ebr70]) use specialized on-chip hardware (an electrothermal filter), which is
not available to us.

Our idea for calculating thermal diffusivity from a series of thermal images
is heating up the chip with some workload and recording how the chip cools
down after the workload has ended. With processor workloads the switch off
is basically instant compared to the temperature change, and with no heat
source, the heat diffusion equation changes to:

V2T(93,?J) o o (6.5)
%l
_ ot

= ooy (6.6)

However, when calculated for all pixels in all frames of the chip cooldown
video with this method, we get wildly different values for o varying in both
time and space. Thus we ignore the temporal parameter altogether (just
as described in [SZAT19]), as adding it would probably do more harm than
good. We thus use the local maxima of only the negative Laplacian to find
the heat source locations, and videos where the chip started from cold and
the workload was applied for the entire duration.

(h,yn) = arg max —V2T(m, Y) (6.7)

61

6. Determining heat sources on chip for different workloads

(a) : Reference (b) : Recorded (c) : Normalized

Figure 6.2: Normalization of the tilted image to top-down view

r""'-!‘r -

-y

(a) : Original (b) : Smoothed (c) : Negative (d) : Negative
thermal image thermal image Laplacian Laplacian local
maxima

Figure 6.3: Heat source detection on the TX2 SoC during the CPU 32bit integer
addition benchmark with all cores active

| X Implementation

As the videos were recorded with the camera tilted at a slight angle, we
normalize them with a homography to a top-down view using a reference
image (see Figure . The thermal and reference grayscale images are
too different to find the homography automatically, so we calculate the
homography using manually selected corresponding points.

After normalizing for tilt we create 3 types of videos: with the SoC, left
RAM chip and right RAM chip cropped out, for each benchmark measured.

Before applying the Laplacian on the cropped video images, they need to
be smoothed — the Laplacian is the second spatial derivative of the image, and
numerical derivatives are highly sensitive to noise. Thermal video recordings
suffer from both temporal and spacial noise [Ken93], so we apply a Gaussian
kernel of size 7 to the video in both the two spacial directions, and time — see

Figure [6.3bl

For each frame we detect the local maxima of the negative Laplacian over

62

6.5. Experiment results

the image (Figures 6.3c} 6.3d), sum the locations of of these maxima over the
video frames into a histogram, and divide with the number of video frames.
This results in a 2D histogram of heat sources with each frame essentially
“voting” for heat source locations. The histogram bin heights thus only show
how consistent the maxima locations are through frames, it does not show
how large the maxima are.

M 65 Experiment results

Let’s use the results of benchmark runs to answer the questions outlined in
section [6.2¢

1. Is it possible to locate CPU/GPU cores using the thermal
recordings?
Figure 6.4 shows the combined histogram plots of the CPU arithmetic
benchmarks run on the 6 CPU cores of the SoC. We can see on the
left side of the plot that the histogram maxima for the Cortex-A57
benchmarks form a precise rectangle, clearly showing the positions of
the processor cores. The histogram maxima for the Denver benchmarks
are separated from the Cortex-A57 ones, and more to the right, but are
close to each other, so it is highly likely that they show the positions of
the Denver cores.

All 6 maxima are stable across the two types of instruction runs, so
we can assume that they show real heat sources on the chip. We can
assume that some lines with smaller amplitudes that are stable through
the two types of instruction benchmarks show the locations of buses for
the relevant processors.

In conclusion, it is definitely possible to locate CPU cores on the SoC,
even each one separately.

2. Is it possible to locate GPU streaming multiprocessors using
the thermal recordings?
Figure 6.5/ shows the histogram plot for the GPU benchmark run. We can
clearly see two maxima, which is the number of streaming multiprocessors
(each with 128 cores) in the TX2 Pascal GPU, so it is highly likely that
the maxima show their locations. Thus, we can easily locate the GPU
multiprocessors.

63

6. Determining heat sources on chip for different workloads

(a) : 32bit floating point addition

(b) : 32bit integer addition

Figure 6.4: Combined heat source histogram plots of CPU float/int benchmarks
Red, Cyan, Yellow, Magenta = Cortex-A57 core 0,1,2,3
Green, Blue = Nvidia Denver 2 core 0,1

0.8
0.6 -

0.4

02 J

20

50 60

Figure 6.5: Heat source histogram plot of the GPU arithmetic benchmark run

64

6.5. Experiment results

Figure 6.6: Heat source histogram plot of random memory access benchmarks
on the SoC
Red = L1 cache, Green = L2 cache, Blue = Main memory

Benchmark SoC | RAMO | RAM 1
L1 cache 57.32 | 49.37 49.21
L2 cache 57.34 | 49.88 50.30

Main memory | 58.26 | 51.15 51.16

Table 6.3: Mean temperatures of chips at the end of random access benchmark
runs in °C

3. Isis possible to tell the difference between L1 cache/L2 cache/main

memory accesses when looking at the SoC?

Figure [6.6| shows the shows the combined histogram plots for the 3
random array access benchmark runs. There is no significant difference
between the three plots, and the main heat source visible on the plot is

the Cortex-Ab7 core 0, on which the benchmark ran. Thus, at least using
our method in its current form, it is not possible to tell the difference
between these benchmark runs just by looking at the SoC.

4. How does memory traffic influence DRAM chip temperature?
Figure [6.6| shows the histogram plots for the two RAM chips. We can
again see that there is no significant difference between the 3 benchmarks.
As the benchmarks using only L1 and L2 caches write to main memory
very rarely, if the RAM chips were significant hotspots, we should see
some difference.

Table 6.3 shows the mean temperatures of chips at the end of ran-
dom access memory benchmark runs. We can see that the RAM chips
are indeed warmer at the end of the benchmark run that accesses main
memory, and L1 and L2 final temperatures are very similar. However,
the SoC also gets warmer during the main memory benchmark, and it is
thus unclear if the RAM temperature difference is caused by the RAM
chip itself, or by the SoC heating up its surroundings.

65

6. Determining heat sources on chip for different workloads

—
) —

SDT\’\F\Z
JU

T

(a) : Left RAM chip

(b) : Right RAM chip

Figure 6.7: Heat source histogram plots of random memory access benchmarks
on RAM chips
Red = L1 cache, Green = L2 cache, Blue = Main memory

. 6.6 Conclusion

In this chapter, we outlined a basic method of detecting on-chip heat sources.
Our solution used the heat diffusion equations and ignored its transient
component, which probably made it more inaccurate. During the run of
benchmarks there was no cooling applied to the chips, except for maybe some
passive room temperature air flow, making localization harder as the heat
spread further and faster on the chip. Despite these factors, we managed to
clearly localize CPU processor cores and GPU streaming multiprocessors.

These results imply that if we manage to improve our model by correctly cal-
culating heat diffusivity and apply cooling to the chips (for example backside
cooling with a Peltier device, similarly as described in), we can
likely accurately detect other, smaller heat sources too and can thus develop
more sophisticated algorithms for managing chip temperature.

It would also be worthwhile to run the main memory random access experi-
ment again with a larger memory array, to see if that changes the histogram
plots of the RAM chips. It would also be worth redoing the memory experi-
ments with cooling applied to the SoC, to eliminate the effect of heat spread
from the SoC to the RAM chips and thus check if the RAM chips heat up
more by themselves.

66

Chapter 7

Temperature reduction methods

Temperature reduction without compromising workload performance is one
of the major goals of the THERMAC project, described in section [IL In this
chapter we propose and evaluate two methods for reducing temperature at
equal performance.

We measure and evaluate the effects of Compiler optimization levels
and Frequency scaling on temperature and performance.

We test these methods on the following workloads:

1. Software 3D renderer
2. KCF object tracking algorithm (section 4.3.1)

3. KLT object tracking algorithm (section 4.3.2)

B 71 Experiment setup

We used the NVIDIA TX2 platform (see section 2.1) for our measurements.
The cooler on the System on Chip (SoC) is removed to amplify the temperature
differences between the various compiler /frequency settings.

67

7. Temperature reduction methods

We use standalone open-source implementations of the workloads — [Sok20]
for the 3D software renderer, [pby16] for the KCF tracker and [Bir(7] for the
KLT tracker. These are modified to only read the input data once from disk,
and then run their calculations on the same data in an infinite loop. This
way their runtime can easily be controlled by Thermobench. The benchmarks
track how many times they have done their work and periodically print the
current aggregate value, which is recorded by Thermobench for later analysis.

We run our workloads on four optimization levels: O0-O3. For frequency
scaling, we run our tests on the Cortex-A57 core 0, setting its frequency from
652-1421 MHz, with a step of roughly 150 MHz. To preserve the independence
of measurements, all measurements start out at the temperature of 58 °C
and the chip is left to cool down to that temperature between tests.

. 7.2 Results

B 7.2.1 Compiler optimization level

Figure |7.1| shows the change in temperature vs. the work done (objects
rendered for the renderer, frames processed for the trackers) for the three
workloads. We can see on all 3 graphs, that in terms of work done per
temperature increase:

1. The OO0 optimization level is worse than any other
2. 01, O2 are roughly equivalent

3. 03 is much better than any other optimization level

This is an important finding, as O2 is still commonly used, and often
prioritized above O3 — this set of tests makes it very clear that in terms of
temperature increase per unit of performance for these workloads, O3 is very
highly preferable.

It would be worth testing if the better performance of O3 is caused mainly
by a specific optimization (e.g. loop vectorization), or by their combination.

68

Cortex-A57 temperature (°C)
@
&

1000 2000 3000

Frames processed

(a) : KCF tracker

78
76
74
72
70
68

66

Cortex-A57 temperature (°C)

64

62

60

—03
—02
—o01 76
— 00

Cortex-A57 temperature (°C)
o
&

4000
2k 4k 6k 8k

Frames processed

(b) : KLT tracker

—03
—o02
—o1
— 00

500 1000 1500 2000

Objects rendered

(c) : 3D software renderer

7.2. Results

—o03
— 02
— 01
— 00

Figure 7.1: Compiler optimization level comparison —Temperature vs. work done

B 7.2.2 Frequency scaling

For all workloads, the curves for temperature increase versus work done
follow a simple rule: the larger the frequency, the higher the temperature per
unit work done (see Figure [7.2a)). Because of this, we can better visualize
the relationship between frequency and temperature per unit work done by
plotting the temperature for each frequency at equal work done — see Figure

[7.2Dl.

We compare the benchmark runs at the maximum amount of work done on
the smallest frequency, as that is the point closest to steady-state temperature
where the comparison is still fair.

69

7. Temperature reduction methods

—— 652 MHz

N N r 806 MHz
63 —— 959 MHz 63 4
“ l v I, — 1113 MHz
= —— 1266 MHz
G —— 1421 MH
g e ’ 62
v
2
: [l 1] y
8 61 5
H]‘ u I 5 6 —— 3D renderer
IS g —— KCF
) o — kT
< 3
Pl £
g £ o |
5
o
£
59
58
1000 2000 3000 4000 5000 6000 } | | | | | | |
700 B0 900 1000 1100 1200 1300 1400
Frames processed Frequency/MHz
(a) : KLT tracker (b) : Temperature at equal work done

Cortex-Ab57 core 0 frequency

Figure 7.2: Frequency scaling comparison

We can see from Figure that for the KLT tracker, the temperature
with equal work done has a roughly linear relationship. However, for the
KCF tracker and renderer, the temperature increases slower and slower as the
frequency rises — thus, it is more worth running these workloads on higher
frequencies. It is not clear however, that this effect is not due to the maximum
temperature for the KLT tracker being higher than the rest — it would be
worth to test that in another set of experiments.

. 7.3 Temperature reduction methods

Given the results of section we propose the following methods to reduce
the SoC temperature:

1. Use the optimization level O3
In section it was clearly shown that in terms of temperature change
per unit performance, the optimization level O3 significantly outperforms
all other optimization levels.

2. Use higher frequencies for the same workload
In section we have seen that the temperature for equal work done
increases more and more slowly for increasing frequency (KCF tracker
and 3D renderer) or proportionally with increasing frequency (KLT
tracker). Thus, it is a good idea to use higher frequencies to calculate the
same workload as it results in a smaller relative temperature increase.

70

Chapter 8

Conclusion

In summary, the following was achieved in this thesis:

1. Thermobench tool & benchmarks
I have developed the basis for the Thermobench tool described in chap-
ter 3, which has been later expanded by other THERMAC team members
— Michal Sojka, Ondiej Benedikt, Alexander Barinov. It has low impact
on temperature and performance, and among other features is capable
of reading internal sensors and measuring CPU usage.

Thermobench can also communicate with Thermocam-PCB by querying
point temperatures from the webserver built into Thermocam-PCB.

In addition to the tool I developed several benchmarks, and executed
them on the TX2 platform — the relevant experiments are discussed in
section |3.4. The same benchmarks and experiments can easily be run on
other ARM platforms using the Thermobench tool. They provide useful
information for instruction usage in arithmetic-bound applications.

2. Thermocam-PCB tool
I have developed the Thermocam-PCB tool — see chapter [5l It achieves
most of its requirements — see section 5.5 It is a useful tool for external
measurement of point temperatures on the PCB, as well as providing
useful information through its thermal image.

71

8. Conclusion

3. Locating heat sources
I have proposed a method for locating heat sources on-chip, and used this
method and the Thermocam-PCB tool to identify the locations of major
heat sources (CPU cores and GPU multiprocessors) on the NVIDIA TX2
SoC.

4. Temperature reduction methods
I have proposed two software-based temperature reduction methods
(compiler optimization level choice and frequency scaling) and used the
Thermobench tool to measure and evaluate their effectiveness on object
tracking and software 3D rendering workloads.

The tools constructed and results achieved will be further used and ex-
panded in the THERMAC project.

72

Appendix A

Bibliography

[AN17]

[and17]

[BB17]

[BEKS17]

[Bir07]

[BLID17]

[CH14]

[CLmS16]

C.S. Asha and A.V. Narasimhadhan, Robust infrared tar-
get tracking using discriminative and generative approaches,
Infrared Physics & Technology 85 (2017), 114-127.

and, Infrared thermography sensor for temperature and speed
measurement of moving material, Sensors 17 (2017), no. 5,
1157.

Ertugrul Bayraktar and Pinar Boyraz, Analysis of fea-
ture detector and descriptor combinations with a localiza-
tion experiment for wvarious performance metrics, CoRR
abs/1710.06232 (2017).

Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B
Shah, Julia: A fresh approach to numerical computing, STAM
review 59 (2017), no. 1, 65-98.

Stan Birchfield, KLT: An Implementation of the Kanade-
Lucas-Tomasi Feature Tracker, August 2007.

T.L. Bergman, A.S. Lavine, F.P. Incropera, and D.P. DeWitt,
Fundamentals of heat and mass transfer, Wiley, 2017.

Tze-Yuan Cheng and Cila Herman, Motion tracking in in-
frared imaging for quantitative medical diagnostic applications,
Infrared Physics & Technology 62 (2014), 70-80.

Lu Chaoliang, Ma Lihua, Yu min, and Cui Shumin, Regional
information entropy demons for infrared image monrigid reg-
istration, Optik 127 (2016), no. 1, 227-231.

73

A. Bibliography

[DC19]

[DT05]

[Ebr70]

[FAH*16]

[HCMB14]

[HGMLHM12]

[HZ04]

[JC16]

[Jerl7]

[TM16]

[JM20a]

Z. Dong and L. Chen, Image registration in pcb fault detection
based on infrared thermal imaging, 2019 Chinese Control
Conference (CCC), 2019, pp. 4819-4823.

N. Dalal and B. Triggs, Histograms of oriented gradients for
human detection, 2005 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’05),
vol. 1, 2005, pp. 886-893 vol. 1.

J Ebrahimi, Thermal diffusivity measurement of small silicon
chips, Journal of Physics D: Applied Physics 3 (1970), no. 2,
236-239.

Heiko Falk, Sebastian Altmeyer, Peter Hellinckx, Bjorn Lisper,
Wolfgang Puffitsch, Christine Rochange, Martin Schoeberl,
Rasmus Bo Sgrensen, Peter Wéagemann, and Simon We-
gener, TACLeBench: A benchmark collection to support
worst-case execution time research, 16th International Work-
shop on Worst-Case Execution Time Analysis (WCET 2016)
(Dagstuhl, Germany) (Martin Schoeberl, ed.), OpenAccess
Series in Informatics (OASIcs), vol. 55, Schloss Dagstuhl-
Leibniz-Zentrum fiir Informatik, 2016, pp. 2:1-2:10.

Joao F. Henriques, Rui Caseiro, Pedro Martins, and Jorge
Batista, High-speed tracking with kernelized correlation filters,
CoRR abs/1404.7584 (2014).

Rafael Hidalgo-Gato, Patricia Mingo, José Miguel Loépez-
Higuera, and Francisco J. Madruga, Pre-processing techniques
of thermal sequences applied to online welding monitoring,
Quantitative InfraRed Thermography Journal 9 (2012), no. 1,
69-78.

R. I. Hartley and A. Zisserman, Multiple view geometry in
computer vision, second ed., Cambridge University Press,
ISBN: 0521540518, 2004.

C. Y. Jeong and S. Choi, A comparison of keypoint detec-
tors in the context of pedestrian counting, 2016 International
Conference on Information and Communication Technology
Convergence (ICTC), 2016, pp. 1179-1181.

Jan Jerabek, Wic sdk documentation - version for linuzx, Jan
2017.

Ondra Chum Jifi Matas, Tracking with correlation filters,
2016, Slide 58.

, Local feature extraction and description for wide-
baseline matching, object recognition and image retrieval meth-
ods, stitching and more, 2020, Slide 45.

74

[JM20D)]

[JM20c]

[TM20d]

[TM20e]

[JPR*07]

[Ken93]

[KLB*17]

[KM09]

[KWWT14]

[LCS11]

[Low99)

A. Bibliography

, Local feature extraction and description for wide-
baseline matching, object recognition and image retrieval meth-
ods, stitching and more, 2020, Slide 69.

, Local feature extraction and description for wide-
baseline matching, object recognition and image retrieval meth-
ods, stitching and more, 2020, Slide 72.

, Local feature extraction and description for wide-
baseline matching, object recognition and image retrieval meth-
ods, stitching and more, 2020, Slide 58.

, Robust model estimation from data contaminated by
outliers, 2020, Slide 13.

Andreja Jarc, Janez Pers, Peter Rogelj, Matej Perse, and
Stanislav Kovacic¢, Texture features for affine registration of
thermal (flir) and visible images.

Howard V. Kennedy, Modeling noise in thermal imaging sys-
tems, Infrared Imaging Systems: Design, Analysis, Modeling,
and Testing IV (Gerald C. Holst, ed.), vol. 1969, International
Society for Optics and Photonics, SPIE, 1993, pp. 66 — 77.

Andriy Guilherme Krefer, Maiko Min Tan Lie, Gustavo Ben-
venutti Borba, Humberto Remigio Gamba, Marcos Dinis
Lavarda, and Mauren Abreu de Souza, A method for generat-

ing 3d thermal models with decoupled acquisition, Computer
Methods and Programs in Biomedicine 151 (2017), 79-90.

S. M. Kashmiri and K. A. A. Makinwa, Measuring the thermal
diffusivity of cmos chips, SENSORS, 2009 IEEE, 2009, pp. 45—
48.

Lai Kang, Lingda Wu, Yingmei Wei, Bing Yang, and Hanchen
Song, A highly accurate dense approach for homography es-
timation using modified differential evolution, Engineering
Applications of Artificial Intelligence 31 (2014), 68-77.

Stefan Leutenegger, Margarita Chli, and Roland Y. Sieg-
wart, Brisk: Binary robust invariant scalable keypoints, Pro-
ceedings of the 2011 International Conference on Computer
Vision (USA), ICCV ’11, IEEE Computer Society, 2011,
p. 2548-2555.

D. G. Lowe, Object recognition from local scale-invariant
features, Proceedings of the Seventh IEEE International Con-
ference on Computer Vision, vol. 2, 1999, pp. 1150-1157
vol.2.

75

A. Bibliography

[Low04]

[LYC*19]

[LYZ114]

[Mod11]

[NVI20]

[NXP20]

[Ort12]

[pby16]

[RLSB19]

[Rub20]

[SC19]

[SES10]

David G. Lowe, Distinctive image features from scale-
invariant keypoints, International Journal of Computer Vision
60 (2004), no. 2, 91-110.

Jinyu Li, Bangbang Yang, Danpeng Cheng, Wang Nan,
Guofeng Zhang, and Hujun Bao, Survey and evaluation of
monocular visual-inertial slam algorithms for augmented real-
ity, Virtual Real. Intell. Hardw. 1 (2019), 386-410.

Xiangyun Liao, Zhiyong Yuan, Qi Zheng, Qian Yin, Dong
Zhang, and Jianhui Zhao, Multi-scale and shape constrained
localized region-based active contour segmentation of uterine
fibroid ultrasound images in hifu therapy, PloS one 9 (2014),
€103334.

M. Moderhak, FFT spectra based matching algorithm for
active dynamic thermography, Quantitative InfraRed Ther-
mography Journal 8 (2011), no. 2, 239-242.

NVIDIA Corporation, Jetson tz2 developer kit, 2020, [Online;
accessed July 27, 2020].

NXP Semiconductors, Mcimz8qm-cpu: i.mz Squadmax mul-
tisensory enablement kit (mek), 2020, [Online; accessed July
27, 2020].

Raphael Ortiz, Freak: Fast retina keypoint, Proceedings of
the 2012 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (USA), CVPR ’12, IEEE Computer
Society, 2012, p. 510-517.

pbyb, kcf tracker, December 2016.

Abolfazl Irani Rahaghi, Ulrich Lemmin, Daniel Sage, and
David Andrew Barry, Achieving high-resolution thermal im-
agery in low-contrast lake surface waters by aerial remote
sensing and image registration, Remote Sensing of Environ-
ment 221 (2019), 773-783.

Rubicon Communications, LLC, Minnowboard turbot dual
core board, 2020, [Online; accessed July 27, 2020].

A. A. Sarawade and N. N. Charniya, Detection of faulty in-
tegrated circuits in pcb with thermal tmage processing, 2019

International Conference on Nascent Technologies in Engi-
neering (ICNTE), 2019, pp. 1-6.

Tobias Senst, Volker Eiselein, and Thomas Sikora, li-lk — a
real-time implementation for sparse optical flow, Image Anal-
ysis and Recognition (Berlin, Heidelberg) (Aurélio Campilho

76

[Sok20]

[SZA*19]

[Thi17]

[TK91]

[TLF10]

[Wik20]

[Wor20)]

A. Bibliography

and Mohamed Kamel, eds.), Springer Berlin Heidelberg, 2010,
pp- 240-249.

Dmitry V. Sokolov, Tiny Renderer or how OpenGL works:
software rendering in 500 lines of code, January 2020.

S. Sadigbatcha, H. Zhao, H. Amrouch, J. Henkel, and S. X. .
Tan, Hot spot identification and system parameterized thermal
modeling for multi-core processors through infrared thermal

tmaging, 2019 Design, Automation Test in Europe Conference
Exhibition (DATE), 2019, pp. 48-53.

Nicolas Huynh Thien, Dataset augmentation with random
homographies, Sep 2017.

Carlo Tomasi and Takeo Kanade, Detection and tracking of
point features, Tech. report, International Journal of Com-
puter Vision, 1991.

E. Tola, V. Lepetit, and P. Fua, Daisy: An efficient dense
descriptor applied to wide-baseline stereo, IEEE Transactions
on Pattern Analysis and Machine Intelligence 32 (2010), no. 5,
815-830.

Wikipedia, the free encyclopedia, Epipolar geometry, 2020,
[Online; accessed June 13, 2020].

Workswell s.r.o., Workswell infrared camera (wic), 2020, [On-
line; accessed July 27, 2020].

77

	Introduction
	Hardware platforms
	Target hardware platforms
	Thermographic camera & processing hardware

	Thermobench and related tools
	Thermobench
	Requirements
	Design and implementation
	Results

	Thermobench grapher tools
	Thermobench benchmarks
	Thermobench experiments
	Experiment setup
	Results
	Conclusion

	Tracking in image processing
	Tracking fundamentals
	Correspondence problem and solutions
	Keypoint detection
	Descriptor construction
	Descriptor matching
	Robust model estimation

	Object tracking methods
	Kernelized Correlation Filter (KCF) Tracker
	Kanade-Lukas-Tomasi (KLT) Tracker

	Thermocam-PCB tool
	Requirements
	Functional requirements
	Quality requirements

	Related work
	Design & Analysis
	Choosing the preprocessing method
	Choosing the tracking algorithm
	Tuning the chosen tracking algorithm

	Implementation
	Requirements & Compilation
	Usage
	Command line reference

	Results

	Determining heat sources on chip for different workloads
	Hardware setup
	Experiment setup
	Theoretical basis
	The heat diffusion equation
	Determining thermal diffusivity

	Implementation
	Experiment results
	Conclusion

	Temperature reduction methods
	Experiment setup
	Results
	Compiler optimization level
	Frequency scaling

	Temperature reduction methods

	Conclusion
	Bibliography

