
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Efficient Image Recognition on
Low-Performance CPUs

Martin Jandek

Supervisor: Ing. Michal Sojka, Ph.D.
August 2020



ii



Acknowledgements
I would like to thank my supervisor, Mr.
Sojka, for his guidance through each stage
of the process and for being patient and
supportive during this research.

Declaration
I hereby declare that I have worked on
this thesis independently and specified
all the used information sources in ac-
cordance with the Methodical guidelines
about following ethical principles during
the preparation of university theses.

Martin Jandek
In Prague, 14. 8. 2020

iii



Abstract
Many possible use-cases of slower per-
forming, but small and cheap processors
exist in the world of internet of things.
The power of these processors are most
of the time unutilized. One possible us-
age to better utilize this computing power
could be an object detection in images
or in a video computed directly on the
low-performance processors (as an exam-
ple we present a “smart” kitchen oven
that could detect what kind of food it
currently bakes). This thesis deals with
optimization of such detection running
even on very low-performing processors.
We used the Haar cascade classifier algo-
rithm implemented in the OpenCV library
and ran it on the i.MX6ULL applications
processor. After several benchmarks of
the device and tests of the algorithm, we
achieved increase in performance by about
10% and using some a priori knowledge
about the object size, we demonstrated a
9.5× faster algorithm run.

Keywords: Haar cascade classifier,
OpenCV, Buildroot, NXP, i.MX6ULL,
GCC compiler, perf, Linux

Supervisor: Ing. Michal Sojka, Ph.D.

Abstrakt
Ve světě internetu věcí existuje spousta
využití nepříliš výkonných, ale za to ma-
lých a levných procesorů. Výpočetní vý-
kon těchto procesorů je většinu času nevy-
užitý a jedním z možných využití volného
výpočetního času může být detekce ob-
jektů v obrázcích nebo videu (jako příklad
zde můžeme uvést “chytrou” kuchyňskou
troubu, která sama pozná, jaké jídlo v
ní aktuálně připravujeme). Tato práce se
zabývá optimalizací běhu takového algo-
ritmu i na málo výkonných procesorech.
Použili jsme OpenCV implementaci algo-
ritmu Haarova klasifikátoru, kterou jsme
testovali na modulu i.MX6ULL. Po ně-
kolika benchmarcích zařízení a testování
zvoleného algoritmu jsme dosáhli zrych-
lení běhu klasifikátoru přibližně o 10%.
Při použití určitých apriorních znalostí
ohledně velikosti objektu, který chceme
detekovat, jsme demonstrovali běh algori-
thmu rychlejší přibližně 9.5-krát.

Klíčová slova: Haarova kaskáda,
OpenCV, Buildroot, NXP, i.MX6ULL,
GCC kompilátor, perf, Linux

Překlad názvu: Efektivní algoritmy pro
rozpoznávání obrazu na levných
embedded procesorech

iv



Contents
1 Introduction 1
2 Background 3
2.1 Hardware equipment . . . . . . . . . . . 3
2.2 Buildroot . . . . . . . . . . . . . . . . . . . . . 3
2.3 Application profiling . . . . . . . . . . . 4
2.4 Haar cascade classifier . . . . . . . . . . 4
2.4.1 Training of the Haar cascade
classifier . . . . . . . . . . . . . . . . . . . . . . . 7

2.5 OpenCV library . . . . . . . . . . . . . . . 8
2.5.1 OpenCV implementation of the
Haar cascade classifier . . . . . . . . . . . 9

2.5.2 Detecting objects with the
OpenCV Haar cascade classifier . 11

3 Experimental setup 17
3.1 OpenCV cross compilation . . . . . 17
3.2 Preparation of the Linux kernel . 17
3.3 Buildroot usage . . . . . . . . . . . . . . 18
3.4 Training the Haar classifier . . . . 19
3.5 The testing program . . . . . . . . . . 20
4 Optimization of the OpenCV Haar
cascade classifier 23
4.1 Analysis of possible optimization
techniques . . . . . . . . . . . . . . . . . . . . . 23

4.2 Hardware functionality testing and
benchmarking . . . . . . . . . . . . . . . . . . 24

4.3 Function call-chain analysis of the
detection phase run . . . . . . . . . . . . . 26

4.4 Optimization using compilation
parameters . . . . . . . . . . . . . . . . . . . . . 29
4.4.1 OpenCV compile-time
configuration parameters . . . . . . . 29

4.4.2 GCC compiler optimization
parameters . . . . . . . . . . . . . . . . . . . 30

4.4.3 Results for differently-sized
models . . . . . . . . . . . . . . . . . . . . . . . 32

4.5 Code optimization . . . . . . . . . . . . 33
4.5.1 Analysis of the algorithm code 33
4.5.2 Optimization of main classifier’s
methods arguments . . . . . . . . . . . . 34

5 Conclusion 37
Bibliography 39
Project Specification 43

v



Figures
2.1 Haar features . . . . . . . . . . . . . . . . . 5
2.2 Features used to detect the most
significant areas of a human face . . . 5

2.3 Pixel intensities detected inside the
Haar feature . . . . . . . . . . . . . . . . . . . . 6

2.4 Schema of the rejection cascade . . 7
2.5 OpenCV History Timeline . . . . . . 9
2.6 Intel’s IPP optimization speedup
for some OpenCV methods (image
taken from the book Learning
OpenCV by G. Bradski [18] . . . . . . 10
2.7 Example of the .xml file
representing one node (strong
classifier) of the Haar cascade
classifier . . . . . . . . . . . . . . . . . . . . . . . 11

2.8 Data structures representing the
cascade classifier as implemented in
the OpenCV . . . . . . . . . . . . . . . . . . . 12

2.9 Fail of the histogram equalization,
when the input image is a kind of an
edge case – this whole image is too
dark and does not contain many
bright pixels . . . . . . . . . . . . . . . . . . . 13

2.10 Success highlighting the edges by
equalizing the histogram . . . . . . . . . 13

2.11 Declaration of the
detectMultiScale method . . . . . . . . . 14

2.12 An example of so-called
“neighbours” – multiple subwindows,
where the object is detected, which
overlays each other . . . . . . . . . . . . . . 15

2.13 Face detection in a park scene:
even tilted faces are detected; for the
1, 111 × 827 image shown, more than
a million subwindows in different
scales were searched to achieve this
result in about 0.25 seconds on a 3
GHz machine (taken from Learning
OpenCV by G. Bradski [18] . . . . . . 16

3.1 The very simple testing program
used for the analysis and
optimization of the Haar cascade
classifier run . . . . . . . . . . . . . . . . . . . 21

4.1 Part of the program used for
memory benchmarking . . . . . . . . . . 25

4.2 Testing the actual sizes of device
caches . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.4 Optimization of performance using
the CMake and GCC parameters –
measured on 10 images of size
640 × 480 using the “simple model” 31

4.5 Optimization of performance using
the CMake and GCC parameters –
measured on 10 images of size
640 × 480 using the “frontalface
model” . . . . . . . . . . . . . . . . . . . . . . . . 33

4.6 Algorithm performance for few
different minimal object sizes
(maximum object size set to
600 × 440 – measured on 10 images of
size 640 × 480 using the “frontalface
model” . . . . . . . . . . . . . . . . . . . . . . . . 34

vi



Tables
4.1 GCC optimization flags in different
optimization level . . . . . . . . . . . . . . . 31

vii





Chapter 1
Introduction

People tend to have everything “smart” and “intelligent”. What can be more
smart and intelligent than for example a cooking oven, which could recognize
what is inside, set itself without any human interventions and notify us, when
the food is ready? This would not be a problem, but we need to take one
significant consideration – the price of such a device. The is no problem to
load the kitchen appliances with high-end desktop-like hardware, but the
price would be extremely enormous. Fortunately, many embedded systems
exist, which are cheap and just the perfect match to be used in such devices.
But even here lies a massive drawback and it is the computing power.

Some companies already gets to the segment of image processing on IoT
devices like the kitchen appliances. Traditional approach to implementing AI
to power these appliances has been to transmit data, for example the images,
to a cloud platform where the data is processed on powerful processors and
the results are sent back to the appliances. This approach is pretty functional
and is used in many real applications. On the other hand, this approach
means transmitting data out and when the data are sensitive, a solution
without sending anything anywhere out is desirable. Because the processors
in IoT devices are not usually powerful at all, we need to find an acceptable
algorithm and try to optimize it to achieve satisfactory performance even on
low-performance devices.

This thesis aims to find a suitable image-recognition algorithm that could
be run on a very low-performance embedded systems. We discuss the ability
to run such algorithms, provide a description how to setup an embedded
system based on the i.MX6ULL device including all needed software. We also
deeply analyze one of the image-recognition algorithms, benchmark it and
enhance its performance on the device.

Reader of this thesis should be able to setup an embedded system like the
one used in this project and prepare the software based on recommended
settings arised from this work. Even on a low-performance embedded system,
he should be able to get a very well-performing object detection.

1



2



Chapter 2
Background

This Chapter provides background information about technologies used in
this thesis, which is necessary for understanding the follow up Chapters. In
this Chapter we discuss the i.MX6ULL manufactured by NXP as the device
to be used. We also acquaint the reader with Buildroot, OpenCV open-source
library, Haar cascade classifier and its OpenCV implementation.

2.1 Hardware equipment

During this project, we use NXP’s “cost-optimized” ultra-efficient i.MX6ULL
applications processor. It features a single-core Arm Cortex-A7 CPU operat-
ing at 528 MHz, 250780 kB of memory (exact size obtained by executingcat
/proc/meminfo on Linux system), 32 kB of L1 instruction cache, 32 kB of L1
data cache and 128 kB of L2 cache. Also, this system on a chip (SoC ) features
a NEON co-processor, including 32-bit double-precision VFPv3 floating point
registers [9].

Compilating all the massive libraries directly on the target hardware would
be impossible due to the low amount of memory, so all supportive programs,
the used libraries, and the kernel were cross-compiled on a UNIX-based laptop
using the x86 instruction set.

2.2 Buildroot

Buildroot is one of the most widely used tools simplifying the whole process of
building an embedded system using cross-compilation. Buildroot masks the
whole building process, so it become much more convenient. It can generate
a toolchain file used for cross-compilation, build a root filesystem, a Linux
kernel image, and a bootloader. It is based on the build tool Make and, by
default, requires only a few Linux packages (a list of mandatory and optional
packages can be found in the official documentation [2]).

Over two thousand packages (from simple text libraries to advanced graph-
ical and network libraries and programs) are available to install to the em-
bedded system directly with a Buildroot. Even the OpenCV, which we use in
this thesis, can be installed through the Buildroot directly, without any needs

3



2. Background .....................................
to compile the library manually. Buildroot comes with its configurations
and one can configure the whole wanted target system to his needs. Make
menuconfig is a tool used to set the specific configuration. This tool uses the
classic ncurses interface and Buildroot comes with more similar tools, for
example, make xconfig that uses a Qt-based interface. The classic interface is
the same one that is used to configure the build of a Linux kernel. During
this configuration, Buildroot manages the whole process, including download
and install of all wanted packages to be used in the target system. Buildroot
documentation [2] is very well-written, so if some details are needed, that is
the right place where to look.

2.3 Application profiling

Application profiling is a necessary step before any tweaks or optimization
experiments and one of the simpliest and most widely used tools is a Linux’
package perf. Perf is a performance analyzing tool distributed inside the
codebase of the Linux kernel. Because of that, perf has much smaller overhead
than any other application-based profiling tool, which does not have the direct
access to the hardware as the kernel itself. To understand the location of
performance bottlenecks, the perf tool needs to store backtrace information
of the running application for later analysis. One way is to use frame
pointers. This approach is used not only for storing the call-chain but is
also used by the program itself and a debugger to establish an address of
local variables in memory. A downside is that it affects runtime performance.
Also, most programs use a compiler option to omit frame pointers (which
prevents debuggers to perform stack unwinding in a simple way) by default.
Another approach is to use the libunwind library, which uses DWARF debug
information (produced by the compiler) to unwind the stack. [17].

2.4 Haar cascade classifier

Haar cascade classifier is a tree-based object detection technique first in-
troduced by Viola and Jones [32] mainly used for a performance-critical
image recognition as an alternative to the nowadays popular neural nets.
We can divide the algorithm into two phases. The training part and the
testing (= classification = detection) part. A model, which represents the
decision-making of the classifier, arises from the training part (more on this in
the Section 3.4). It was introduced mainly as a face detector but is actually
capable of detecting any “mostly rigid” object (faces, cars, humans, food on
a uniform background, ...) [18]. Why “mostly rigid” objects? “Mostly rigid”
object contains parts that are, independently on the one particular object,
the same. For example, we can say that a car is a rigid object, because all
cars have wheels at the bottom, a hood in the front, a windscreen adjoining
the hood, and pretty much the same contour. The same we can say about a
human face. All faces contain two eyes in the same height – one eye some-

4



................................ 2.4. Haar cascade classifier

where in the top-left part and a second eye somewhere in the top-right part
and also a mouth somewhere in the bottom-center part. We can define these
static parts of the object by “features”. “Feature” describing one part of the
object (for example a feature describing a mouth in the image of a face) is a
static rectangular region containing a relevant information about a part of the
object. In our case, a feature is a region containing a sharp contrast between
pixel intensities (in the human face example, we can say that one feature
represents the upper lip). Let us show an example of few features describing
the human face in the Figure 2.2. As Viola and Jones firstly introduced the
algorithm, it worked only on the base of upright position features. In the
Figure 2.1, we can see even tilted features. Later on, Lienhart and Maydt
introduced even features rotated by 45 degrees [24], which lead to the increase
in precision of the detector.

Figure 2.1: Haar features

Figure 2.2: Features used to detect the most significant areas of a human face

As we can see in the Figure 2.3, each feature contains many pixels rep-

5



2. Background .....................................
resented by their intensities. Because we want to reduce the information
needed to detect the object as much as possible, we cannot have only the
pixel intensities, but we also need something to represent that specific feature.
This let us remember only the few features, respectively, their location in the
image and the number representing the feature. A feature is, in our case (a
feature is, in the image processing, a general concept, so we will define the
feature only for the usage in Haar cascade classifier), then represented by a
single number computed as the difference between sums of pixel intensities
in the black area and in the white area (2.3). We can compute this number
from any feature (a rectangle of any size) in the input image. It means that
the number of all possible features in the input image is significantly higher
than the total number of pixels in the picture. Let us say we have a picture
of size 20 × 20 pixels. Now we can take all rectangles of all sizes, so we get
m∗n+m∗n+C(m∗n, 2) = 2∗m∗n+C(m∗n, 2) = 20∗20+20∗20+79800 =
80600 features, where m is the height of the image, n is the width of the
image and C is a function computing the number of combinations.

Figure 2.3: Pixel intensities detected inside the Haar feature

That does not sound like we have reduced the information needed to
represent the object, does it? The Haar cascade classifier uses the Adaboost
algorithm to select only the optimal (minimal) features needed to detect
the wanted object (with the set probability – false negative detecion) in the
training part of this algorithm. Adaboost [26] is a machine-learning algorithm,
which takes a great number of weak classifiers as input (in our case, it takes
all the features as input) and returns a strong classifier. This strong classifier
is a weighted sum of the weak classifiers from the input (in our case, it returns
the weighted sum of only the minimal number of features). This means
we finally reduced the information needed to describe an object. For the
next description, we refer to the figure 2.4. Each feature contains its weight
(rejection rate – it means how important is the particular feature to represent
the object) and the features are then grouped into so-called nodes. Each

6



................................ 2.4. Haar cascade classifier

node carries its own Adaboost classifier composited from a weighted sum of
few features (we can say that the feature plays the role of a weak classifier in
here and the whole node is the strong classifier) and the nodes put together
the so-called rejection cascade [18]. This sums up the representation of the
classifier model.

Figure 2.4: Schema of the rejection cascade

When it comes to the classification part, the Haar cascade classifier uses
the shifting window algorithm that takes a subwindow (= part of the image,
as we can demonstrate in the Figure 2.4) and the subwindow goes through the
rejection cascade. Shifting window algorithm means that it takes a window of
a particular size and iterates through the whole image (x and y coordinates),
where it takes all possible windows of that size. As said, each node is a
strong classifier that outputs True (contains the wanted object) or False (does
not contain the wanted object). Each subwindow must pass through all the
nodes and if the subwindow contains the object, all nodes in the cascade
must return True. If False is returned from even one node, the subwindow
is rejected and does not pass the next nodes. Each node is trained to have
a high detection rate (almost 100%, usually about 99.5 - 99.9%), but also a
pretty high rejection rate (almost 50%). We can afford these high rejections
rates, because when we layer the nodes into the cascade, the rejection rate is
greatly reduced. When one has 20 layers (20 strong classifiers = 20 nodes
= 20 Adaboost classifiers) in the rejection cascade, the rejection rate of the
whole cascade drops to 0.520 ≈ 0.000001, and the detection rate of the whole
cascade stays pretty high on 0.99920 ≈ 0.98 [18].

2.4.1 Training of the Haar cascade classifier

Two main approaches to the classifier training exist – we can either train the
classifier on a single image and generate a dataset from this image, or get a
huge dataset of different images (images of both the object and many possible
object’s background images). As for the first approach – single image – we
take for example a logo or some other static image (usually a 2D image) and

7



2. Background .....................................
apply many possible distortions to it. Rotate it, make it partly transparent,
place other objects in front of a small part of it, blur it, just whatever
comes to mind. These distortions creates tens or maybe even hundreds of
positive training samples from just one image. The other approach is to
collect a massive dataset of images (for example cars, faces, food) and train
the classifier on this dataset. Having the dataset of positive images (which
are images containing the object we want, ideally images of only the object
without any background) is not enough. We have to provide the algorithm
even negative images (images not containing the object) and images to be
used as a background for the object. When we need to train the algorithm to
detect a car, we have to provide it even images of planes, motorcycles, etc.
as negative samples. To train even better performing classifier, one should
generate images of the object on different negative images used as the object’s
background and (same as in the single image approach), apply some simple
distortions to the object. We cannot just put the different positive images
into the training algorithm and let it, but it is necessary to align the images.
For example, when training the classifier to detect a human face, we need
to align the eyes, the nose and the mouth to be in the same location on all
the samples. They do not have to be at the exact same location in all the
samples, but preferably as close as possible. We can say that without this
alignment, we try to teach the classifier that eyes do not have to be in the
same location in a face, but practically anywhere inside the face region [18].
In the Section 3.4, we describe the particular training process as we executed
it.

2.5 OpenCV library

OpenCV is an open-source library written in C++ providing an optimized
implementation of many algorithms and data structures from basic image data
manipulation to deep machine learning techniques. In 1999, Gary Bradski (an
Intel employee at that time) started collecting well-optimized code provided
mostly by students and student groups. During his visits to some prestigious
universities, he realized that most student groups have at least some shared
codebase, which passes from student to student so that their project does not
start totally from scratch. These libraries were mostly very well-optimized
for the usage of the research. That was the most significant moment, which
led to the very beginning of the whole OpenCV project. We show the main
releases of this library in the timeline in the Figure 2.5.

OpenCV nowadays collects libraries for a broad spectrum of computer
vision procedures. The maintainers of the main codebase tries to ensure
that only well-optimized (by various approaches) code of high quality gets
to be merged into the library itself. One specific example could be a part of
Intel’s proprietary IPP low-level optimization (figure 2.6), which was provided
by Intel to be used freely in the OpenCV mainline. Although the idea of
OpenCV was to provide only the best free-of-charge optimized computer
vision algorithms, many parts of the library are obsolete and not that well

8



................................... 2.5. OpenCV library

Figure 2.5: OpenCV History Timeline

optimized.
Google, Microsoft, IBM, and Samsung are some of the most notable

users (and also contributors) of the OpenCV project. The most remarkable
contributor is still Intel, respectively, its sub-company Itseez, who also did
the most work during the starting part of the library. [18]

2.5.1 OpenCV implementation of the Haar cascade classifier

In the OpenCV library, the whole Haar cascade classifier is implemented in
the cv::CascadeClassifier class [10], where it provides both the methods to
load/store the trained model and to run the detection phase of the algorithm.
OpenCV library provides its application to train the classifier and generate a
.xml file containing its description. Although we trained our own simple model
to try and test the application, for the testing purposes (practical training of
the classifier is described in the Section 3.4), we used both the pre-trained
model located in the official OpenCV repository (specifically, it is located in
the OPENCV_ROOT/data/haarcascades/haarcascade_frontalface_alt.xml)
and our simple model (more on the topic of different model sizes in the Section
3.4).

In the OpenCV library, the classifier is implemented as a vector of stages
and a vector of internal nodes. In the Section 2.4, we defined the nodes as
the objects containing the Adaboost strong classifier inside. To match the
OpenCV naming, we will now call these groups of strong classifiers stages
and the numbers representing the features itselfs internal nodes.

9



2. Background .....................................

Figure 2.6: Intel’s IPP optimization speedup for some OpenCV methods (image
taken from the book Learning OpenCV by G. Bradski [18]

The following text is accompanied by the Figure 2.7, where we can see
the .xml representation of a single stage (a strong classifier) containing three
weak classifiers. Each stage has an associated threshold. By comparing the
classifier output with the threshold, the algorithm determines whether the
region contains the wanted object or not. Each weak classifier inside the
strong one (the internal node) also has an associated threshold. The weak
classifier refers to two other weak classifiers (one rejecting the subwindow and
one accepting the subwindow – the subwindow contains the object or do not
contain the object), where it propagates the value. We can use the Figure 2.4,
but instead of the whole stages, all the weak classifiers inside can also reject
the subwindow. A sum of all values ( assigned during the pass through a weak
classifiers is tested against the strong classifier threshold (stage threshold)
and possibly rejected (depends on the threshold) as not containing the object.
Subwindow decided as containing the wanted object has to be accepted by all
the strong classifiers and all the weak classifiers inside. All the values whose
sum we test against the strong classifier’s threshold are specified during the
training phase.

Let us now describe the classes and the data structures used. As we have
already mentioned, the whole cascade classifier is implemented in the objdetect
[10] module. More specifically, the cascadedetect.cpp and cascadedetect.hpp
files. Training output of this classifier is a .xml file representing the cascade
(containing values of minimal hit rate, maximal false alarm rate, number of
stages, size of the wanted object, strong and weak classifiers). We can find the
data structure holding these parameters in cv::CascadeClassifierImpl::Data.
We can see the implementation of this data structure in the Figure 2.8. As

10



................................... 2.5. OpenCV library

...
<maxWeakCount >3</ maxWeakCount >
<stageThreshold > -1.5401084423065186 e+00 </ stageThreshold >
<weakClassifiers >

<_>
<internalNodes >0 -1 7 -6.7867025732994080e -02 </

internalNodes >
<leafValues >6.0000002384185791e -01 -9.5112013816833496e

-01 </ leafValues >
</_>
<_>

<internalNodes >0 -1 2 4.4192366302013397e -02 </
internalNodes >

<leafValues > -9.2392551898956299e -01 2.9810953140258789e
-01 </ leafValues >
</_>
<_>

<internalNodes >0 -1 17 7.2595225647091866e -03 </
internalNodes >

<leafValues > -8.7738829851150513e -013.3493724465370178e
-01 </ leafValues >
</_>

</ weakClassifiers >
...

Figure 2.7: Example of the .xml file representing one node (strong classifier) of
the Haar cascade classifier

we have stated before, struct Stage contains the strong classifier (respectively
only the threshold value), struct DTree carries the number of nodes (number
of weak classifiers) and struct DTreeNode contains the node (weak classifier)
threshold, references (indexes) to two other nodes and a featureIdx, which
represents the particular feature. Features have their own unique index, just
like if they were in an array. That way we do not need to store the coordinates
or any other information regarding the feature other than its index. For each
node, the featureIdx is used to evaluate the actual feature value inside the
HaarEvaluator class. If a stage contains only one node (it means that the
depth of the binary decision tree is 1), the structure representing the stage is
named Stump.

2.5.2 Detecting objects with the OpenCV Haar cascade
classifier

We have already analyzed the data structures storing the classifier, so now,
let us have a look at how the algorithm executes and its call graph. Many
books and articles are dealing with the usage of the OpenCV library [19, 21],
so we will mention only the necessary knowledge to analyze the code.

11



2. Background .....................................
class Data
{

public :
struct DTreeNode

{
int featureIdx ;
float threshold ; // for ordered features only
int left;
int right;

};

struct DTree
{

int nodeCount ;
};

struct Stage
{

int first;
int ntrees ;
float threshold ;

};

struct Stump
{

int featureIdx ;
float threshold ;
float left;
float right;

};
}

Figure 2.8: Data structures representing the cascade classifier as implemented
in the OpenCV

The only method needed for the detection is cv::CascadeClassifier::detectMultiScale.
We show the declaration of this method in the Figure 2.11. It is called on the
object of class CascadeClassifier that loads the cascade model from a .xml file.
This method takes as parameters an input image, where we want to detect the
object, and a vector of the object (defined by x, y coordinates and its x and
y sizes) as detected by the classifier (or detector, because the algorithm as is
only detects the object and returns the coordinates of it in the input image).
What is done before or after calling this method is irrelevant and depends
on the desired pre-processing and post-processing. For example, we could
grab the returned vector of object’s coordinates and show the input image
with them color drawn on it. Before running the detector, input images are
often pre-processed by equalizeHist. It boosts the image contrast, so it makes
all edges in the image to be much more significant and so easier to detect
any solid-shaped object. In the pictures 2.9 and 2.10, we can see, what the
equalizeHist does with the input images. On the first comparison, the input
image was too dark and had the space of pixel intensities too narrow. In the

12



................................... 2.5. OpenCV library

output image, we can see that the histogram equalization made the picture
even worse, because it tried to make the space of pixel intensities even and
the whole spectrum of dark pixels was almost randomly brightened. On the
second comparison, the equalization was a good step, because the edges in the
input image is well highlighted. We should remind that the first comparison
is really an edge case and in most cases, the histogram equalization does a
good job pre-processing the detector input image.

Note that in the real world one should pre-process the images at least
with some simple pre-processing methods before the cascade classification
algorithm takes its place in the program run to get some serious results. The
"golden standard" is to resize the images to a uniform size. For smaller images,
the classifier would have a better performance in terms of processing speed,
but we lose some of the details. It means that an object, which was of a
smaller size before the resizing, would be much harder to detect, because of a
low amount of pixels covered by it and, e.g., low contrast of its edges. Another
approach to gain even better performance could be to remove unnecessary
borders of the image, which often is just a background of a single color. This
can be done, for example, by a combination of the Hough transform and the
Canny edge detector [23].

Figure 2.9: Fail of the histogram equalization, when the input image is a kind of an
edge case – this whole image is too dark and does not contain many bright pixels

Figure 2.10: Success highlighting the edges by equalizing the histogram

13



2. Background .....................................
cv:: CascadeClassifier :: detectMultiScale (

const cv:: Mat& image , // Input ( grayscale ) image
vector <cv::Rect >& objects , // Vector of detected objects
double scaleFactor = 1.1, // Factor between scales
int minNeighbors = 3, // Required neighbors to count
int flags = 0, // Flags (old style cascades )
cv:: Size minSize = cv:: Size (), // The smallest of the object
we will consider

cv:: Size maxSize = cv:: Size () // The largest of the object
we will consider

);

Figure 2.11: Declaration of the detectMultiScale method

First, the detectMultiScale calculates all possible scales of the wanted object
(we want it to detect objects of any size – for example a small face and a
big face). These possible scales are stored in a vector called scales. The
whole object-finding process works with an image in grayscale, so if the input
image is not already in grayscale, it converts it into grayscale. Next comes
the computationally demanding part, which can be parallelized with the
pthread library, the TBB library, or even the OpenMP library (depending
on the availability and compilation parameters set). The implementation is
straightforward and almost naive, only using sophisticated data structures
(as described in the Section 2.5.2). Entire shifting window algorithm is
implemented in the operator() method of cv::CascadeClassifierInvoker. For
each scale of the wanted object, it runs the runAt detection method on
all points at (x, y) coordinates. Simply filed, we cycle through all x and
y coordinates of the input image, which tell us whether this particular
subwindow (at coordinates x, y with a size set by the scale of the wanted object)
contains the requested object. In the algorithm 1, we can see the pseudocode
of the described shifting window algorithm. The ‘weight’ parameter of the
runAt method is a bit wrongly named, but it is the value, which was compared
to the last stage threshold during the rejection cascade run. If the library is
compiled to be run on a multi-thread CPU, the operator() method is called
in parallel. The runAt method performs the detection. In the Section 2.5.1,
we have outlined the tree search executed in the Haar cascade classifier. The
predictOrderedStump method (or predictOrdered, depending on the size of the
tree), which is called in the runAt method, implements that tree search. If
the runAt method returns True (contains the desired object), the subwindow
is saved inside the output vector, waiting for the aggregation phase.

The result of the detectMultiScale method is that the objects vector is filled
with subwindows, where the wanted object was detected. Sometimes, there
can be a more significant number of subwindows right next to each other
(e.g., a face is detected in all subwindows ±10% on an x axis and ±10% on an

14



................................... 2.5. OpenCV library

Algorithm 1 Haar cascade classifier – Shifting window algorithm
1: for scale in scales do
2: for x in image width do
3: for y in image height do
4: runAt(HaarEvaluator, Point(x, y), scale, weight)
5: end for
6: end for
7: end for

y axis). All subwindows are then grouped and filtered based on the “number
of neighbours” criteria (for example, eliminate all rectangles without at least
3 neighbours — possibly a fault detection). Neighbours of a subwindow are
other subwindows that overlaps a significant area of it – it most likely means
that it is the same object, but detected in more than one subwindow (an
example of multiple neighbour subwindows is presented in the Figure 2.12). In
the Figure 2.13, we can see the detected objects rendered as white rectangles
into the input image.

Figure 2.12: An example of so-called “neighbours” – multiple subwindows, where
the object is detected, which overlays each other

15



2. Background .....................................

Figure 2.13: Face detection in a park scene: even tilted faces are detected; for the
1, 111 × 827 image shown, more than a million subwindows in different scales were
searched to achieve this result in about 0.25 seconds on a 3 GHz machine (taken

from Learning OpenCV by G. Bradski [18]

16



Chapter 3
Experimental setup

In this Chapter we describe the work needed to prepare the testing envi-
ronment – compilation of the used library, build of the whole system, and
generating a model for the Haar cascade classifier to be used to detect objects
in images.

3.1 OpenCV cross compilation

We compiled the OpenCV library, version 3.4, using the GCC ARM cross-
compiler (specifically the ‘arm-linux-gnueabihf-gcc’, version 10.1.0), enabling
the hardware support for floating-point instructions. The only prerequisites
for the build are CMake, the ARM cross-compiler, the pkgconfig package, and
Python 2. The SoC we were using does have a NEON co-processor, and it has
hardware floating-point instructions support. For example, on the Ubuntu
Linux distribution, two different cross-compiler packages can be installed. The
‘arm-linux-gnueabi’ compiler sets the -mfloat-abi parameter to soft by default,
so that the generated code does not contain floating-point instructions, and
should be used when compiling for target hardware that does not have a
floating-point co-processor. The other (‘arm-linux-gnueabihf’) the -mfloat-abi
parameter to hard by default, so one does not need to remember setting
it to hard when compiling a specific program or library. In all following
experiments, the library and all supporting programs were compiled using
the ‘arm-linux-gnueabihf’.

3.2 Preparation of the Linux kernel

For this project, we used an older version of Linux kernel, version ‘4.1.15_gtm3-
1.0.1’. We were not able to make the latest mainline kernel run on the hardware
used. Even with different kernel configurations, we did not determine what
could be the problem that the latest kernel does not boot on the system used.
Since we needed a functional kernel (there are not many changes in the kernel
that could affect this research), we used a custom NXP’s kernel based on
version 4.1., which was already tested on this hardware and was working well.

17



3. Experimental setup ..................................
A device tree is a data structure describing the individual hardware compo-

nents and how they are interconnected, so we need it working and configured
to the i.MX6ULL. The device tree is passed to the Linux kernel during
the booting process, so that the kernel knows, where to find the hardware
components, such as the CPU, the memory or peripherals. Before the usage
of device trees, the Linux kernel had a hard-coded hardware-specific code
inside its codebase. With the growth of different hardware supported, there
was an effort to move all the hardware-specific code outside the kernel source
code. The kernel codebase still contains pieces of hardware-specific code,
but the device tree specifies, whether to enable some functionality or not.
The kernel official git repository contains device trees for an extensive list of
hardware supported [31], but even the external provided device trees (outside
the kernel source code) can be used [7]. The device tree we use for this project
is a NXP’s proprietary one written specifically for this SoC, but it has not
been well tested yet, so we cannot be sure that everything works as it should.
Device tree distributed along with a Linux kernel in its repository is not yet
available for this SoC.

We realized that the Linux tool perf does not show any hardware-specific
events it could have possibly track, but we knew that the Cortex-A7 should
have a PMU inside, so there should be a possibility to track many different
events. After some research, we discovered that although the device tree used
contained the PMU, it was disabled. We changed the status field from disabled
to okay (to allow the operating system access to the unit) and recompiled
the device tree. This discovery, though, raised a question about the proper
functionality of the PMU. If the device tree we use is a NXP’s one written
for this SoC, it should enable all the functionality. They could have found a
bug with the PMU enabled, so they could have just disable it to fix it later.
For the proper continuation of this project, we have to test the functionality
of the PMU and if there is a bug, then find it. Using the Linux perf tool, we
will test the values captured from this unit in the Section 4.2.

3.3 Buildroot usage

We already introduced the Buildroot as a tool, so here we can raise the
specific steps we made to run the system as a whole.

We used a different Linux kernel than the ones provided by Buildroot itself
and used Buildroot mainly to simplify the system build. Buildroot supplies
the latest Linux kernel plus a few older ones. Buildroot can be configured
to use not only the provided kernels, but also a kernel from a git repository.
Buildroot will then will then fetch it, use the configured kernel parameters
and compile the kernel right from the repository. Specifically, we used kernel
version 4.1. with some hardware vendor (NXP) supplied additional patches.
The main change made in the Buildroot regarding the kernel is enabling the
Linux tool perf.

Other necessary preparation was to install the libunwind library, which is
described in the Section 2.3. We can find the library in the packages provided

18



.............................. 3.4. Training the Haar classifier

by Buildroot, so all we need to do is configure the Buildroot to include this
library into the target system.

Other hardware-specific configuration of the Buildroot has to correspond
to the actual device used. So we set the ARM target architecture with
little-endian byte order. We can set the Cortex-A7 CPU as the “Target
architecture variant”. Also, since the Cortex-A7 supports NEON and VFPv4
instruction sets, we allow the use of these. Buildroot supports many different
architectures and a vast number of packages to be installed, a situation that
a particular package cannot be installed to a particular architecture often
happen. Buildroot uses inside dependencies, which prevents the conflicting
packages to be installed. All options are well described in the documentation
[2].

3.4 Training the Haar classifier

Before we can optimize the classification part of the Haar cascade algorithm,
we need to train the classifier and use the result of the training, the model.
OpenCV offers some pre-trained models in the OpenCV tutorial (distributed
in the same git repository as the source codes), so, for example, eyes or face
recognition works well with the provided models. Also, because of the wide
usage of OpenCV, one can find a pretty well pre-trained model for almost
any meaningful usage (but still, most use-cases are the face, eyes or human
body detection) [16, 29]. OpenCV tutorials and documentation present a
pretty straightforward approach to how to train the classifier. Since the
latest OpenCV version (version 4.3 at the time of writing this thesis) does
not contain the applications for cascade classifier training pre-processing
(the opencv_annotation and opencv_createsamples), we use the OpenCV
version 3.4. These two applications make our work much easier, since they
generate the files needed for the training part and we do not have to write the
generating scripts manually. These applications were removed in particular
because of the old C-based API. One of the OpenCV contributors stated [6]
that the algorithm (Haar cascade classifier) is deprecated when compared to
the deep neural networks (DNN). The classifier has been preserved due to a
number of books using it as its base knowledge. Although, DNN is out of
scope for this work, since its hardware requirements are extremely high and
DNN are not to be used on low-performance devices. No significant algorithm
changes that could affect the testing process were made since the version 3.4,
so we will use this version not only for training, but for all the upcoming
work.

The official OpenCV tutorial [3, 18] documents the whole process very well,
so we will just quickly go through the mentioned OpenCV applications usage
for the training. First, we need to obtain the negative images and create
a text file describing the path (can be absolute or relative) to each image
containing one path per line. Next, we need the positive samples. For that,
we can use the opencv_annotation tool. We need to provide the algorithm
specific coordinates, where the object to be detected lies in the image (on

19



3. Experimental setup ..................................
the x and y axis). The annotation tool provides a graphical interface to
annotate a bigger number of images fast and simple. It shows images (from
a folder path passed as argument to the application) sequentially and we
only need to draw a rectangle, where the object is. It generates a similar
file to the one used for the negative samples, but each image has its own
description about how many objects it contains and where the objects are (x
and y coordinates of the top left corner with its width and height). Having
the text file describing the positive samples, we use the opencv_createsamples
application to generate a binary file, which is then passed to the Haar cascade
classifier for the training process. The application used for training itself
is called opencv_traincascade, which generates the final .xml file containing
the cascade description. It takes as arguments the binary file of positive
samples, text file of negative samples and various other arguments that are
well documented in the tutorial [3]. Since we want to optimize the classifier
run (the classification part, because the training can be done beforehand
on a much more powerful hardware), we need a pre-trained model. We
generated a very simple model (using about 50 positive samples and about
400 negative samples), which is almost useless for the real-world detection.
Although the small model is not really useful for a reliable object detection,
it provides us an opportunity to compare a big model (the OpenCV provided
one) trained on several thousand positive and tens of thousands negative
samples to the small one trained on tens of positive and hundreds of negative
samples. For the following experiments, we use both the our generated
model and the OpenCV pre-trained model. We call them “simple model”
and “frontalface model” (distributed along with the OpenCV codebase in
OPENCV_ROOT/data/haarcascades/haarcascade_frontalface_alt.xml) and
we will specify the used model for each experiment.

3.5 The testing program

For the profiling and optimization part of this thesis, we used a straightforward
program, based on an OpenCV tutorial application, that loads images given
a path to the folder and tries to detect the wanted object/objects (based on
the pre-trained model) in each of them. In the documentation of the objdetect
module [10], we can find that the method called detectMultiScale does all the
job regarding the search of the wanted object. The method returns a vector
of rectangles defined by x, y coordinates, width and height that contains the
wanted object (the detected object, as the method name suggests, can be in a
different scale than the original one). We do not post-process the rectangles,
since the post-processing does not come under the classifier algorithm as is.
We can see the testing program code below.

Histogram equalization (as described in the Section 2.5.2) is the only
pre-processing we do with the input image before calling the detectMultiScale.

20



................................. 3.5. The testing program

CascadeClassifier cascade ;
String cascade_name = parser .get <String >(" cascade ");
String path_name = parser .get <String >("path");

// -- 1. Load the cascade
if (! cascade .load( cascade_name )) {

cout << " --(!) Error loading the cascade \n";
return -1;

};
unsigned int counter = 0;

// -- 2. Read the images
vector <Mat > images ;
load_images (path_name , images , false);
Mat frame_gray ;
std :: vector <Rect > objects ;
printf (" Number of images : %d\n", images .size ());

for (Mat image : images ) {
equalizeHist (frame_gray , frame_gray );
// put all found rectangles of wanted object into ’objects ’
vector
cascade . detectMultiScale (image , objects );

}

Figure 3.1: The very simple testing program used for the analysis and optimiza-
tion of the Haar cascade classifier run

21



22



Chapter 4
Optimization of the OpenCV Haar cascade
classifier

We analyze the possible optimization opportunities, analyze some approaches
and finally describe the results of some performance-oriented tests and discuss
the path to increase the performance of the used algorithm.

4.1 Analysis of possible optimization techniques

Multiple layers of optimization techniques exist, which we list here, but some of
them are not realized in this project. We can divide the possible optimization
into three categories. The first one is a compilation-time optimization (type
and version of a compiler, parameters used to build a specific library - for
example CMake parameters, etc.). The second is a code optimization (used
data structures, optimizing loops and conditions, branch prediction, etc.).
And the last one is a hardware-specific optimization (analysis of cache sizes +
optimization of data fitting into a cache line, rewrite parts of the code, which
is executed the most, or is the slowest to execute, in CPU-specific assembly).
The third one is the most time-demanding and usually not necessary. The rule
related to all the categories is that when starting with any optimizations, we
should study the SoC running the code before doing anything more complex.
That includes mainly if we can perform parallel computations, if we can use for
example floating-point instructions and cache sizes. In this particular project,
we run the code on a single-core CPU, which means that any parallelism can
only make the performance worse due to context switching overhead.

When it comes to the compile-time optimization, larger projects usually
have some documented configuration files or CMake parameters that affect
the implementation generally. For example, for a multi-core system, a fully-
parallelized method is called instead of the single-core version. Explicitly,
the OpenCV has a vast amount of CMake parameters to tweak. If compiled
manually, we can adjust these parameters to match the hardware as close
as possible. Also, when dealing with a larger and older (more than 20 years
old as for the OpenCV) library, there may be some configurations not even
functional, so at least small research of what a particular option actually do
is necessary.

23



4. Optimization of the OpenCV Haar cascade classifier....................
Another step to increase performance is very much related to the first

one mentioned and still falls into the compile-time optimization category,
and it is the compiler used and the compiler options used. Dealing only
with the project-specific configurations is not the end of the pre-compilation
optimization, because, for example, the GCC compiler, can significantly
optimize the generated code. For example, the SoC we use supports NEON
instructions, which means that the GCC compiler, when set correctly, can
optimize most loops in the program. We will look into this optimization
technique in the Section 4.4 in more detail. Analyzing the OpenCV CMake
parameters along with the GCC compiler options could be the first step to
any other optimization.

The last optimization technique we consider is the actual code re-writing
and code optimization. Before any code adjustments, we have to understand
the code, the language the code is written in, how the hardware cache memory
works [20], and also how the processor work. One way is to understand the
code and try to re-write the algorithm with the specific hardware in mind.
Another way is to analyze the code, improve the manipulation with the used
data structures, maybe use different data structures. A good example is
appending to a C++ vector. When appending to a vector inside a loop,
the operating system has to reallocate the vector, because it grows in size,
and the recurring reallocation as a process costs a tremendous amount of
resources. Another great example could be the usage of wrong numeric data
types. Usage of smaller (in terms of size in bits) data type in a method (or a
loop) that is called thousands of times might make a difference in what data
fits inside the cache. It might make a vast performance difference.

To sum it up, we list the possible optimizations in the following list:.Optimization of compile-time parameters of the OpenCV. Setting up the compiler and its options. Code optimization. Deeper hardware-specific optimizations (mostly re-writing parts of the
code to assembly)

In this project, we will fully cover the pre-compilation optimization, analyze
its impacts, and examine the code for other possible optimizations.

4.2 Hardware functionality testing and
benchmarking

The previous analysis and configuration raised two major questions - the
PMU support was disabled in the device tree, and we cannot be sure about
the actual size of the hardware cache memory. Here we cover the testing
and benchmarking part of the device. We did the cache size testing using a
memory benchmarking program written in C language. Also, along with the

24



..................... 4.2. Hardware functionality testing and benchmarking

struct s array[ MAX_CPUS ][64 * 0 x100000 / sizeof ( struct s)]
__attribute__ (( aligned (2 * 1024 * 1024)));

// preparation of the linked list
if ( sequential ) {

for (i = 0; i < count - 1; i++)
array[i]. ptr = &array[i + 1];

array[count - 1]. ptr = &array [0];
} else {

memset (array , 0, size);
struct s *p = &array [0];
for (i = 0; i < count - 1; i++) {

p->ptr = ( struct s *)1; /* Mark as occupied to avoid
self -loop */

for (j = rand () % count; array[j]. ptr != NULL; j = (j >=
count) ? 0 : j + 1)

p = p->ptr = &array[j];
}
p->ptr = &array [0];

}

Figure 4.1: Part of the program used for memory benchmarking

benchmark program, we used the Linux perf tool to collect the data, compare
it to the output of a standard laptop, and determine if the PMU in the device
works correctly.

We used a benchmark program provided by the supervisor [30]. As we
can see in the Figure 4.1, the program allocates a simple array of pre-defined
size and connects the elements into the linked list (random or sequentially,
depends on the input parameter). It goes through the linked list (read-only
or read and write) a given number of times, once again set by the input
parameter. The graph in the Figure 4.2 from several runs (read-only) using
the random order. More specifically, we ran the benchmark ten times for each
of the different array lengths, then calculated the mean value (as plotted) and
the standard deviation (error bars) of the runs. On the left y-axis axis, we
illustrate the number of CPU cycles taken by the benchmark program using
the array size labeled on the x-axis. CPU cycles are log-scaled to demonstrate
the increase better. Also, the CPU cycles number is the output of the perf
command, so it does represent even the preparation of the benchmark, not
only the values reading. On the right y-axis (not scaled to the left one),
we can see a percentual ratio of cache misses to the total cache references
separated by cache levels. It is undeniable that the size of the L1 cache really
is 32 kB. The cache misses of level one cache rise slightly in the interval
from 24 kB to 32 kB, but the primary growth is in the interval from 32 kB
to 48 kB. Analogically, we can say that the level two cache is 128 kB, since
the ratio of cache misses of L2 cache expands since that array size.

Another thing we need to test and demonstrate is the proper functionality
of the PMU. We cannot be 100% sure that the values are very exact. However,

25



4. Optimization of the OpenCV Haar cascade classifier....................
we can determine from the graph in Figure 4.2 that the values from multiple
benchmark runs are valid and do not differ much from the benchmark runs
on the laptop processor with a genuinely functional PMU.

Figure 4.2: Testing the actual sizes of device caches

4.3 Function call-chain analysis of the detection
phase run

Here we analyze the call-chain of the algorithm’s classification phase and
figure out where most of the cache-misses happen. We show the flame graphs
of the two call-chains – on the laptop and on the i.MX6ULL itself and compare
them.

In Figures 4.3a and 4.3b, we can see the comparison of all cache-misses
(both L1 and L2) in the call-chain first recorded on the i.MX6ULL itself and
on the laptop. We can say that the cache-misses happen in the same methods.
The difference in the naming of the integral function is caused by the Intel’s
IPP optimization mentioned before. The most significant number of misses
happen in the method called integral. That is the method, where the feature
value is computed from the integral image. To achieve a near-to-zero cache-
misses here, we would have to store the whole integral image in the hardware
memory cache. Furthermore, we would have to store all the images, in which
we want to detect the object, in cache, and that is, considering the size of
the L1 and L2 cache, unattainable. These particular results as seen on the

26



.................. 4.3. Function call-chain analysis of the detection phase run

graphs are measured using the cascade trained by ourselves against. About
80 images were used (with about 50% positive and 50% negative samples) of
size 640×480 to test the performance of the algorithm. We do not show these
graphs for the pre-trained cascade provided by OpenCV, which is much bigger
than the ours, but the results were very similar and we get almost identical
graphs for both the cascades. This simple flame-graph of cache-misses gives
us information about where we should focus our optimization work. If we
optimize the number of cache-misses in the integral method, we will make
the whole algorithm run significantly faster.

27



4. Optimization of the OpenCV Haar cascade classifier....................

(a) : Cache-misses happened in the
classification algorithm run on the
i.MX6ULL

(b) : Cache-misses happened in
the classification algorithm run on
a laptop

28



....................... 4.4. Optimization using compilation parameters

4.4 Optimization using compilation parameters

In this part of the work, we will study the possibilities of optimization
at compile time, we will tweak the OpenCV compile-time configuration
parameters and GCC command-line arguments to gain the best results
possible on our specific hardware.

4.4.1 OpenCV compile-time configuration parameters

In this Section we describe the OpenCV compile-time parameters and we try
to tweak them to gain the best performance possible. Since we compile the
OpenCV manually, the first and easiest one is tweaking the build parameters
[4]. OpenCV comes with a lengthy list of CMake options.

To build a library for a different platform using CMake, we need a so-called
toolchain file, which is passed to the CMake itself and contains information
regarding the compiler and other tools used. Since the OpenCV uses CMake
as its build system and we need to cross-compile the whole library, we need
that toolchain file. A possible way is to write one from scratch, but as
said before, we since we use Buildroot [2, 28] to build the system, which
automatically generates a toolchain file during the system build. We use this
toolchain file and tweak it afterward if any changes are necessary. If one has
a Buildroot system already built, the toolchain file is located in
BUILDROOT_ROOT/host/share/buildroot/toolchain.cmake. It sets some
necessary compilation parameters, such as C compiler or CXX compiler.

After the analysis of the CMakeLists.txt OpenCV file, we found that
there could possibly be considerable differences in performance when the
compilation parameters are correctly set.

First, turn off everything, which is not available on the embedded sys-
tem. That is, turn off all parallelization (we use a single-core processor),
graphical interfaces (GTK is enabled by default), and OpenCL support.
OpenCV provides Python and Java support, which we also do not require.
To sum that up, use WITH_PTHREADS_PF=OFF, WITH_GTK=OFF,
WITH_OPENCL=OFF, BUILD_JAVA=OFF,
BUILD_opencv_python2=OFF and BUILD_opencv_python3=OFF. None
of these options is essential to increase the performance of the test code, but
it speeds up the compilation of the OpenCV and excludes unneeded files from
compiling.

Now, for the optimization itself. The most significant difference could
make usage of NEON vector instructions. OpenCV supports enabling NEON
instructions in its CMake configuration. Adding ENABLE_NEON=ON
should do the trick (we will check the process later on). The processor in
our embedded system supports even VFPv3 instruction set, which should be
better optimized. The opposite is exact, and after a series of tests, enabling
VFPv3 in OpenCV did not speed up the tested algorithm at all. Enabling
the VFPv3 instruction set, we found that the tested program was even slower
by about 6% than without enabling anything. We can see the comparison

29



4. Optimization of the OpenCV Haar cascade classifier....................
of different options enabled in the Figure 4.4. For each label, a + character
means that the particular option is enabled/set and a − character means the
opposite. The ENABLE_NEON parameter does not do anything at all. At
least for our purpose.

We should be aware that CMake tweaking is always a bit of a problem, be-
cause one cannot be sure it does what it says. Even though ENABLE_NEON
was set correctly, there were no changes in the testing program run perfor-
mance (as we can see in the Figure 4.4) and if it worker, there would have
to be at least a small performance increase. The reason is that OpenCV
does not use NEON data types at all. NEON support for OpenCV is still
under development, and although there is a CMake parameter enabling it,
it does not affect the program or libraries at all. There is almost a test
program to check, whether the NEON is supported located in the OpenCV
source codes (OPENCV_ROOT/cmake/checks/cpu_neon.cpp) that uses
the NEON support, but support for the whole library is not yet imple-
mented. We can verify that by searching for the CV_NEON phrase in the
whole project. CV_NEON is the macro used for NEON support in the
OpenCV project, but only a supporting file for an optimization library exists
(OPENCV_ROOT/modules/core/include/opencv2/core/neon_utils.hpp), but
the library is not used in any of the classes we use. We did one more confir-
mation on this finding – even in the dump of the generated assembly code,
there is no usage of NEON instructions.

4.4.2 GCC compiler optimization parameters

In this Section, we analyze and test the performance of different compiler
options. The default GCC optimization for CMake build type RelWithDebInfo
is -Os, which optimizes the code only if the optimization does not increase
the size of the generated code. Only by using the -O2 optimization, we
achieved performance better by about 16% compared with the -Os option.
The differences in GCC optimization flags are not extensive. If we call gcc
-Q -Os (-O2) –help=optimize [12], we can see all the flags and their state
(enabled / disabled). After checking the diff of flags of these two optimizations,
only six flags differ. That are -falign-functions, -falign-jumps, -falign-labels,
-falign-loops, -foptimize-strlen and -finline-functions. In the table 4.1, we can
see that the first five flags are disabled in -Os optimization and enabled in
-O2. The last one is the opposite.

What we thought could make the most notable difference is -falign-loops,
because of the shifting window algorithm used for many possible scales of the
image. We recompiled the whole OpenCV with -Os optimization used, but
with -falign-loops parameter enabled. Unfortunately, without any difference
in performance against the plain -Os option. In the graph 4.4, the -Os
optimization was enabled in the first four experiments (first four bars). Since
the generated code of -O2 optimalization is not marginally larger than using
the -Os option, we will use the -O2 optimization.

Last but not least, we try the profile guided optimization (PGO) [12]
implemented directly by the GCC compiler. This approach is the most

30



....................... 4.4. Optimization using compilation parameters

GCC optimization
flag

-Os optimization -O2 optimization

-falign-functions disabled enabled
-falign-jumps disabled enabled
-falign-labels disabled enabled
-falign-loops disabled enabled
-foptimize-strlen disabled enabled
-finline-functions enabled disabled

Table 4.1: GCC optimization flags in different optimization level

Figure 4.4: Optimization of performance using the CMake and GCC parameters –
measured on 10 images of size 640 × 480 using the “simple model”

demanding of possible optimizations to be done by tweaking the GCC compiler
options. Nevertheless, it makes a significant difference in improving the
performance of an application that executes very similar code path in each
run (e.g., detecting an object in an image – many subwindows not containing
the wanted object means many runs in the similar code path that rejects the
subwindow). To execute the profile guided optimization, we need to recompile
the OpenCV library twice, each time with different compiler parameters. The
first time, we have to use the -fprofile-generate parameter along with the
-fprofile-dir. The -fprofile-dir only sets the path, where the optimization files
(Gcov data files [1]) should be generated. One compiles the project using
these parameters, run it once (or multiple times with different input data),
and GCC generates those Gcov data files. We pass a path to these files to
the -fprofile-use GCC parameter (in the following compilation), and the final
compilated program should be a bit better in terms of performance.

What it actually does under the lid that during the training run, the
compiler collects runtime data such as a number describing how many times a
branch is taken and data about values of expressions used during the program

31



4. Optimization of the OpenCV Haar cascade classifier....................
run. These data can then be used mainly for branch prediction optimization
in the following project compilation. That is why two compilations of the
whole project are needed.

We tried it once without any specification of the path (by default, it should
be the same folder as the binary files). The relative path (the same folder as the
binary files) do not work when cross-compiling. When we set the -fprofile-dir
parameter to the absolute path (in the target system), the files were generated
as they should. In the graph above, we can see the performance enhance after
the PGO second compilation. The total performance enhancement is about
21% in the testing program performance (counted against default OpenCV
compilation without manual changes and tweaks). We present the results
from the most important compile-time options in the Figure 4.4. We ran
the algorithm using each option 10 times – each bar in the graph shows the
average run-time and the black lines on the top show the standard deviation
for each option. The results were acquired using the “simple model” and 10
images of size 640 × 480.

4.4.3 Results for differently-sized models

We have mentioned that the model we trained was really small in comparison
for example to the pre-trained one provided by OpenCV, so we measured
the three most important compile-time parameters (taken from the graph
4.4) – default OpenCV options without both NEON and VFPv3 support, the
-O2 optimized without NEON and VFPv3 support and the generted code
using profile-guided-optimization – again, now using the “frontalface model”.
When we change the used cascade, whole PGO generated code is not effective
at all, because it causes the algorithm to have about 40% branch-misses.
The conclusion from this finding is that we need to optimize the code using
PGO for each different cascade separately. That is because each cascade has
a different number of strong and weak classifiers, so the branch prediction
trained on one cascade simply cannot be the same for much bigger cascade.

Using the “frontalface model” result in much lower performance. For
the same number of images of the same size, only using the larger model
causes about 4 times slower performance (we can see the difference in the
Figure 4.5 vs Figure 4.4 – 8.25 vs 34.5 seconds for the default option without
any optimization and without NEON and VFPv3 instructions). Using the
-O2 GCC optimization level increases the performance by about 9% (in
comparison to about 6% using the “simple model”). What is remarkable
is that even the PGO “trained” on the “frontalface model” actually made
the algorithm slower when comparin to the library compiled without using
PGO. We executed the experiment twice – we “trained” the PGO using the
same images, which we then used for measuring the algorithm run-time and
generating the graph 4.5 and for the second time, we “trained” the PGO on
a different dataset. The results were both times the same – PGO makes the
algorithm slower by about 3% when using a larger model. We can see the
results in the Figure 4.5. The results are generated based on data from the
average of 10 algorithm runs on images of size 640 × 480. Standard deviation

32



.................................. 4.5. Code optimization

of the results are displayed as the black line in the top of each bar.

Figure 4.5: Optimization of performance using the CMake and GCC parameters –
measured on 10 images of size 640 × 480 using the “frontalface model”

4.5 Code optimization

In this Section we analyze the algorithm code itself, find some places to
optimize the algorithm performance and describe results of few more tests to
gain even better performance.

4.5.1 Analysis of the algorithm code

We analyze the algorithm code and possible optimizations to implement. The
algorithm itself is written so efficiently that we did not find almost anything
we could re-write to gain a better performance. Because we ran the classifier
on a single-core CPU, we removed all remains from parallelization – mutex
locking and unlocking in the CascadeClassifierInvoker’s operator() method.
Unfortunately, this change is too small to have an impact on the algorithm
performance and the average performance from 10 runs stays the same (the
standard deviation was bigger than the performance difference, so we cannot
determine any performance increase).

33



4. Optimization of the OpenCV Haar cascade classifier....................
4.5.2 Optimization of main classifier’s methods arguments

In the Section 2.5.2, we presented the declaration of the detectMultiScale
method and in this Section, we analyze the changes that the method’s
arguments changes cause and try to optimize them to gain better performance.

Figure 4.6: Algorithm performance for few different minimal object sizes
(maximum object size set to 600 × 440 – measured on 10 images of size 640 × 480

using the “frontalface model”

Since the classifier is able to detect objects of any size (default minimal
size is the minimum of sizes of the object as described in the text file of
positive samples, which is used during the training phase), we could control
the minimal and maximal size of the detected object (and ignore the rest) and
thus increase the performance, because we significantly reduce the number
of tested subwindows. We executed this particular optimization only on the
“frontalface model”, since that one uses a size of 20 × 20 as the minimal size
of a detected human face. Size of images, where the object is to be detected,
has to be taken into consideration. Because we run the classifier on images of
size 640 × 480, we set the minimal size of detected human face to 120 × 120
(for the experimental purposes, we do not need to detect very small faces,
but we want to demonstrate the performance difference). Also, we limited
the maximum size of the detected face to 600 × 440. Since we increased the
minimal object size, we should decrease the scale factor (to be able to detect
faces of more different sizes in the allowed size interval). We changed the
default scale factor (which is 1.1) to 1.05. All these values can be set when
calling the detectMultiScale method, as shown in the Figure 2.11.

The performance difference is enormous and the time needed to run the
algorithm on 10 images of size 640×480 drops from about 32 seconds to about
3 seconds, which means that the performance is about 10.5 times better. In
the Figure 4.6, we present few different minimal sizes of the detected objects
and their impact on the algorithm performance. All the results are the average

34



.................................. 4.5. Code optimization

from 10 runs using the “frontalface model” on 10 images of size 640 × 480
with the standard deviation in time differences shown as the black error bars
on top of each orange bar (on the Figure 4.6 are almost zero deviations, so
the black dot really is the error bar).

Considering this experiment, we can say that if we have an a priori knowl-
edge about the object size in the tested images, we can limit the minimal and
maximal object size to significantly increase the classifier’s performance.

35



36



Chapter 5
Conclusion

The goal of this thesis was to find, select, analyze and optimize an im-
age recognition algorithm running on a low-performance embedded device
i.MX6ULL.

The selected “Haar cascade classifier” performs pretty well and even on the
low-performance hardware, it is able to provide precision object detection in a
matter of milliseconds per image. We were able to increase the performance of
the algorithm by about 10%. Using some a priori knowledge about the object
size, we demonstrated a 9.5× faster algorithm run. Running the classifier on
a single core CPU, we removed all parallelization from the implementation.
Unfortunately, it did not led to any performance increase. We tested the
algorithm with two different model sizes, which led to a conclusion that we
need to limit the detected object size in order to have a sufficient performance
when running on the slow processor. We also optimized the compile-time
parameters of the OpenCV library and GCC options, which led to the
mentioned 10% increase in performance.

We did not succeed in running the latest mainline Linux kernel, which could
be a big drawback in future works using the i.MX6ULL applications processor.
Using the manufacturer’s custom older Linux kernel, we ran several memory
benchmarks to verify the actual hardware parameters and its capabilities.

We also described the Haar cascade classifier and its OpenCV implementa-
tion to the detail and generated our own classifier’s model, which could be a
steppingstone for similar future works needing an efficient image recognition
algorithm for a lower-performance processor.

37



38



Bibliography

[1] Brief Description of gcov Data Files. – URL https://gcc.gnu.org/
onlinedocs/gcc/Gcov-Data-Files.html

[2] The Buildroot user manual. – URL https://buildroot.org/
downloads/manual/manual.html

[3] Cascade classifier training. – URL https://docs.opencv.org/3.4.0/
dc/d88/tutorial_traincascade.html

[4] CPU optimizations build options. – URL https://github.com/opencv/
opencv/wiki/CPU-optimizations-build-options

[5] Cross compilation of OpenCV for ARM based Linux system. – URL
https://docs.opencv.org/2.4/doc/tutorials/introduction/
crosscompilation/arm_crosscompile_with_cmake.html

[6] : Deprecation of the Haar Cascade applications in the OpenCV codebase.
– URL https://github.com/opencv/opencv/issues/13231

[7] Device tree reference. – URL https://elinux.org/Device_Tree_
Reference

[8] Histogram equalization. – URL https://docs.opencv.org/3.4/d4/
d1b/tutorial_histogram_equalization.html

[9] i.MX6ULL Data Sheet. – URL https://www.nxp.com/docs/en/
data-sheet/IMX6ULLCEC.pdf

[10] OpenCV Docs: Object Detection. – URL https://docs.opencv.org/3.
4.0/d5/d54/group__objdetect.html

[11] OpenCV Documentation. – URL https://docs.opencv.org/3.4.8/
index.html

[12] Options That Control Optimization. – URL https://gcc.gnu.org/
onlinedocs/gcc-4.7.2/gcc/Optimize-Options.html

[13] Perf Wiki. – URL https://perf.wiki.kernel.org/index.php/Main_
Page

39

https://gcc.gnu.org/onlinedocs/gcc/Gcov-Data-Files.html
https://gcc.gnu.org/onlinedocs/gcc/Gcov-Data-Files.html
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/manual/manual.html
https://docs.opencv.org/3.4.0/dc/d88/tutorial_traincascade.html
https://docs.opencv.org/3.4.0/dc/d88/tutorial_traincascade.html
https://github.com/opencv/opencv/wiki/CPU-optimizations-build-options
https://github.com/opencv/opencv/wiki/CPU-optimizations-build-options
https://docs.opencv.org/2.4/doc/tutorials/introduction/crosscompilation/arm_crosscompile_with_cmake.html
https://docs.opencv.org/2.4/doc/tutorials/introduction/crosscompilation/arm_crosscompile_with_cmake.html
https://github.com/opencv/opencv/issues/13231
https://elinux.org/Device_Tree_Reference
https://elinux.org/Device_Tree_Reference
https://docs.opencv.org/3.4/d4/d1b/tutorial_histogram_equalization.html
https://docs.opencv.org/3.4/d4/d1b/tutorial_histogram_equalization.html
https://www.nxp.com/docs/en/data-sheet/IMX6ULLCEC.pdf
https://www.nxp.com/docs/en/data-sheet/IMX6ULLCEC.pdf
https://docs.opencv.org/3.4.0/d5/d54/group__objdetect.html
https://docs.opencv.org/3.4.0/d5/d54/group__objdetect.html
https://docs.opencv.org/3.4.8/index.html
https://docs.opencv.org/3.4.8/index.html
https://gcc.gnu.org/onlinedocs/gcc-4.7.2/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-4.7.2/gcc/Optimize-Options.html
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page


5. Conclusion......................................
[14] Profiling OpenCV Application. – URL https://github.com/opencv/

opencv/wiki/Profiling-OpenCV-Applications

[15] QEMU Documentation. – URL https://www.qemu.org/
documentation/

[16] authors, Multiple: Pre-trained models for Haar cascade classifier – face
/ eyes / human body detection. – URL http://alereimondo.no-ip.
org/OpenCV/34

[17] Bastian, Théophile ; Kell, Stephen ; Zappa Nardelli, Francesco:
Reliable and fast DWARF-based stack unwinding. In: Proceedings of
the ACM on Programming Languages (2019), S. 1–24

[18] Bradski, G. ; Kaehler, A.: Learning OpenCV: Computer Vision with
the OpenCV Library. O’Reilly Media, 2008. – ISBN 9780596554040

[19] Culjak, I. ; Abram, D. ; Pribanic, T. ; Dzapo, H. ; Cifrek, M.:
A brief introduction to OpenCV. In: 2012 Proceedings of the 35th
International Convention MIPRO, 2012, S. 1725–1730

[20] Drepper, Ulrich: What every programmer should know about memory.
In: Red Hat, Inc (2007)

[21] Guennouni, S. ; Ahaitouf, A. ; Mansouri, A.: Multiple object
detection using OpenCV on an embedded platform. In: 2014 Third
IEEE International Colloquium in Information Science and Technology
(CIST), 2014, S. 374–377

[22] Hilliard, George: Mastering embedded Linux. – URL
https://www.thirtythreeforty.net/posts/2020/01/
mastering-embedded-linux-part-3-buildroot/

[23] Kurukulasooriya, Ayesha ; Dharmaratne, Anuja: Image Searching
with Eigenfaces and Facial Characteristics, 01 2011, S. 215–224

[24] Lienhart, Rainer ; Maydt, Jochen: An extended set of haar-like fea-
tures for rapid object detection. In: Proceedings. international conference
on image processing IEEE (Veranst.), 2002

[25] Magid, Salma A. ; Petrini, Francesco ; Dezfouli, Behnam: Image
Classification on IoT Edge Devices: Profiling and Modeling. In: arXiv
preprint arXiv:1902.11119 (2019)

[26] Martínez Zarzuela, Mario ; Díaz-Pernas, Francisco ; Antón-
Rodríguez, Miriam ; Perozo, Freddy ; González-Ortega, David:
AdaBoost Face Detection on the GPU Using Haar-Like Features, 05
2011, S. 333–342

[27] Nuhi, Ali: ARM NEON development. – URL http://www.add.ece.
ufl.edu/4924/docs/arm/ARM%20NEON%20Development.pdf

40

https://github.com/opencv/opencv/wiki/Profiling-OpenCV-Applications
https://github.com/opencv/opencv/wiki/Profiling-OpenCV-Applications
https://www.qemu.org/documentation/
https://www.qemu.org/documentation/
http://alereimondo.no-ip.org/OpenCV/34
http://alereimondo.no-ip.org/OpenCV/34
https://www.thirtythreeforty.net/posts/2020/01/mastering-embedded-linux-part-3-buildroot/
https://www.thirtythreeforty.net/posts/2020/01/mastering-embedded-linux-part-3-buildroot/
http://www.add.ece.ufl.edu/4924/docs/arm/ARM%20NEON%20Development.pdf
http://www.add.ece.ufl.edu/4924/docs/arm/ARM%20NEON%20Development.pdf


...................................... 5. Conclusion

[28] Petazzoni, Thomas ; Electrons, Free: Buildroot: a nice, simple and
efficient embedded Linux build system. In: Embedded Linux System
Conference, 2012

[29] Sobral, Andrews: Pre-trained model for Haar cascade classifier –
car detection. – URL https://github.com/andrewssobral/vehicle_
detection_haarcascades/blob/master/cars.xml

[30] Sojka, Michal: Memory latency benchmark. –
URL https://github.com/CTU-IIG/thermobench/blob/
8c2607924b025ee34b52fbd2a567cbeff252933b/benchmarks/mem/
membench.c

[31] Torvalds, Linus: Linux kernel git repository. – URL https://git.
kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/

[32] Viola, Paul ; Jones, Michael u. a.: Rapid object detection using a
boosted cascade of simple features. In: CVPR (2001)

41

https://github.com/andrewssobral/vehicle_detection_haarcascades/blob/master/cars.xml
https://github.com/andrewssobral/vehicle_detection_haarcascades/blob/master/cars.xml
https://github.com/CTU-IIG/thermobench/blob/8c2607924b025ee34b52fbd2a567cbeff252933b/benchmarks/mem/membench.c
https://github.com/CTU-IIG/thermobench/blob/8c2607924b025ee34b52fbd2a567cbeff252933b/benchmarks/mem/membench.c
https://github.com/CTU-IIG/thermobench/blob/8c2607924b025ee34b52fbd2a567cbeff252933b/benchmarks/mem/membench.c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/


42



BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

475389Personal ID number:Jandek MartinStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Open InformaticsStudy program:

Computer and Information ScienceBranch of study:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Efficient Image Recognition on Low-Performance CPUs

Bachelor’s thesis title in Czech:

Efektivní algoritmy pro rozpoznávání obrazu na levných embedded procesorech

Guidelines:
Consumer electronics must be cheap, but users expect more and more functionality (or intelligence) even from cheap
devices. The goal of this project is to try to combine those contradictory requirements and optimize several image
recognition/classification algorithms for the given low-cost hardware. The focus is not on developing brand new algorithms,
but rather on optimization and efficient use of computing resources provided by the hardware
platform – a MIPS/ARM-based CPU running Linux.
1. Make yourself familiar with popular image detection/classification algorithms, OpenCV library and software performance
evaluation techniques.
2. Implement a simple program using the OpenCV library for object (e.g. food) detection. Consider using algorithms such
as Haar cascade or SVM classifier. Use freely available datasets for training the classifier.
3. Evaluate performance of the implemented algorithms (detection phase only) and find performance bottlenecks. Carry
out the evaluation on both common laptop CPU as well as low-performance embedded CPU (ARM- or MIPS-based).
4. Propose changes to the detection algorithms to remove or reduce the performance bottlenecks and evaluate the
performance gain.
5. Document the results and discuss trade-offs between quality of object detection and the resulting performance.

Bibliography / sources:
[1] https://perf.wiki.kernel.org/index.php/Main_Page
[2] B. Greeg, Linux performance, http://www.brendangregg.com/linuxperf.html
[3] Viola, Paul & Jones, Michael. (2001). Rapid Object Detection using a Boosted Cascade of Simple Features. IEEE Conf
Comput Vis Pattern Recognit. 1. I-511. 10.1109/CVPR.2001.990517

Name and workplace of bachelor’s thesis supervisor:

Ing. Michal Sojka, Ph.D., Embedded Systems, CIIRC

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 14.08.2020Date of bachelor’s thesis assignment: 10.01.2020

Assignment valid until: 30.09.2021

_________________________________________________________________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
doc. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Ing. Michal Sojka, Ph.D.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1



III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1


	Introduction
	Background
	Hardware equipment
	Buildroot
	Application profiling
	Haar cascade classifier
	Training of the Haar cascade classifier

	OpenCV library
	OpenCV implementation of the Haar cascade classifier
	Detecting objects with the OpenCV Haar cascade classifier


	Experimental setup
	OpenCV cross compilation
	Preparation of the Linux kernel
	Buildroot usage
	Training the Haar classifier
	The testing program

	Optimization of the OpenCV Haar cascade classifier
	Analysis of possible optimization techniques
	Hardware functionality testing and benchmarking
	Function call-chain analysis of the detection phase run
	Optimization using compilation parameters
	OpenCV compile-time configuration parameters
	GCC compiler optimization parameters
	Results for differently-sized models

	Code optimization
	Analysis of the algorithm code
	Optimization of main classifier's methods arguments


	Conclusion
	Bibliography
	Project Specification

