

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Control Engineering

Master’s Thesis

Message authentication for CAN bus and AUTOSAR software
architecture

Bc. Ondřej Kulatý

Supervisor: Ing. Michal Sojka, PhD.

Study Programme: Open Informatics

Field of Study: Computer engineering

January 5, 2015

iv

v

Acknowledgements
I would like to thank my supervisor, Ing. Michal Sojka, PhD. for his guidance and feedback
during the creation of this work and also Ing. Pavel Píša, PhD. for his help. Our thanks
also belong to ArcCore for their support.

vi

vii

Declaration
I hereby declare that I have completed this thesis independently and that I have listed all
the literature and publications used.
I have no objection to usage of this work in compliance with the act §60 Zákon č. 121/2000Sb.
(copyright law), and with the rights connected with the copyright act including the changes
in the act.

In Litovel on January 5, 2015 .

viii

Abstract

The aim of this master’s thesis is to integrate an implementation of the MaCAN protocol
developed by Department of Control Engineering FEE CTU with the implementation of
AUTOSAR architecture developed by ArcCore company. The thesis deals with security on
the CAN bus and with the MaCAN protocol, which serves for message authentication on this
bus. The implementation of the MaCAN protocol mentioned above and another implemen-
tation of the MaCAN protocol from Volkswagen are compared, their incompatibilities are
described and resource usage analysis is carried out. Finally, the integration of our MaCAN
implementation with AUTOSAR architecture is described and demonstrated with a demo
application running on an STM32-based embedded system.

Abstrakt

Cílem této práce je integrovat implementaci protokolu MaCAN vyvinutou na Katedře řídící
techniky FEL ČVUT do implementace architektury AUTOSAR od firmy ArcCore. Práce se
zabývá bezpečností na sběrnici CAN a popisem protokolu MaCAN, který slouží k autentizaci
zpráv na této sběrnici. Výše zmíněná implementace protokolu MaCAN a další implementace
od firmy Volkswagen jsou porovnány s uvedením popisu jejich vzájemných nekompatibilit a
analýzou využití zdrojů. Nakonec je popsán způsob integrace protokolu MaCAN do architek-
tury AUTOSAR a výsledek je otestován pomocí demonstrační aplikace běžící na vestavném
systému založeném na platformě STM32.

ix

x

Contents

1 Introduction 1
1.1 Aims of this thesis . 2

2 Related technologies 3
2.1 CAN bus . 3
2.2 Security problems on CAN bus . 5
2.3 CAN bus extensions . 6
2.4 AUTOSAR . 9

3 MaCAN protocol 11
3.1 Introduction . 11
3.2 Restrictions on CAN bus . 11
3.3 Requirements . 12
3.4 Concept . 13
3.5 Prerequisites . 14
3.6 Protocols . 14

4 MaCAN implementation 21
4.1 CTU MaCAN implementation . 21
4.2 Volkswagen implementation . 27
4.3 Testing . 28
4.4 Compatibility with Volkswagen implementation 33
4.5 Porting to STM32 platform . 35
4.6 Resource usage analysis . 39

5 Integration into AUTOSAR architecture 41
5.1 AUTOSAR architecture . 41
5.2 AUTOSAR Communication stack . 46
5.3 ArcCore and their products . 51
5.4 Integration of MaCAN into AUTOSAR . 52
5.5 Implementation of CDD_Macan in Arctic Core 55
5.6 Demo application . 63

6 Conclusion 71

7 List of Abbreviations 75

xi

xii CONTENTS

8 Enclosed CD table of contents 77

Appendices 79

A Guide – Creating demo project in Arctic Studio 81
A.1 Downloading Arctic Core source code . 81
A.2 Preparing Arctic Studio . 81
A.3 Creating application model . 82
A.4 Creating an Ecu Configuration Project . 85
A.5 Configuring the ECU . 86
A.6 Generate C files from the configuration . 113
A.7 Implementation C files . 114
A.8 Compilation . 117
A.9 Downloading binary file to target board . 118

List of Figures

1.1 Vehicular network in modern a car . 1

2.1 CAN Network . 4
2.2 CAN Frame . 5
2.3 Transmission of data bit for normal CAN and CAN+ protocol [23] 7
2.4 CANAuth frame . 8

3.1 Crypt frame . 14
3.2 Signal authentication . 15
3.3 Authenticated signal request message (SIG_AUTH_REQ frame) 15
3.4 Crypt frame with 32 bit signature (AUTH_SIG frame) 16
3.5 Standard CAN frame with 32 bit signature 16
3.6 Session key establishment . 16
3.7 Challenge message . 17
3.8 Session key message format (SESS_KEY frame) 17
3.9 Session key message format . 18
3.10 Challenge message . 19
3.11 Plain time message . 19
3.12 Signal authentication . 20
3.13 Authenticated time message . 20

4.1 CAN network in the 4signal demo . 30
4.2 CAN network in the volkswagen demo . 32
4.3 Connection of the STM3210C-EVAL to the host computer 35

5.1 AUTOSAR top-level architecture overview . 42
5.2 Software Components interconnected with the VFB[5] 42
5.3 Basic Software (BSW) layer hierarchy . 44
5.4 AUTOSAR Methodology overview . 45
5.5 AUTOSAR CAN Communication stack [3] . 46
5.6 PCI and SDU inside PDU [3] . 47
5.7 PDU types [3] . 48
5.8 Arctic Studio IDE . 52
5.9 Simplified CAN communication stack with CDD_Macan module 54
5.10 Header file hiearchy . 55
5.11 Nodes in the demo . 64

xiii

xiv LIST OF FIGURES

List of Tables

2.1 CAN-FD message formats . 7

4.1 Keyserver command line options . 23
4.2 Timeserver command line options . 23
4.3 Main configuration structure . 24
4.4 Members of the macan_sig_spec structure . 25
4.5 Frame types for signal transmission . 25
4.6 Members of the macan_can_ids structure . 26
4.7 Members of the macan_ecu structure . 26
4.8 Available options for a JSON object describing a node 27
4.9 Available options for a JSON object describing a node 28
4.10 VW keyserver command line options . 28
4.11 VW timserver command line options . 28
4.12 VW gateway command line options . 29
4.13 VW gateway command line options . 29
4.14 Helper scripts available in demos . 29
4.15 Nodes in the 4signals demo . 30
4.16 Signals in the 4signals demo . 30
4.17 Nodes in the volkswagen demo . 32
4.18 Signals in the volkswagen demo . 32
4.19 Fixed memory requirements . 39
4.20 Memory requirements per node . 40
4.21 Memory requirements per signal . 40
4.22 Times measured on TriCore TC1798 and on STM32F107VCT 40

5.1 Members of the CDD_Macan_ConfigType structure 60
5.2 Members of the CDD_Macan_PduConfigType structure 60
5.3 Nodes in the demo . 64
5.4 Signals in the demo . 64

xv

xvi LIST OF TABLES

List of Listings

4.1 Example of a LTK definition . 25
4.2 4signals demo configuration . 30
4.3 ks.json file . 32
4.4 ts.json file . 32
4.5 ecuvw.json file . 33
4.6 signals_ecuvw.json file . 33
4.7 Custom fputc function . 37
4.8 Part of the config.target file . 38
5.1 Function that translates CAN-ID to PDU-ID 57
5.2 MySRInteraface port-interface . 65
5.3 Description of TheProducer component . 65
5.4 Description of TheConsumer component . 65
5.5 Description of the composition . 66
5.6 Implementation of a runnable in TheProducer 67
5.7 Implementation of a runnable in TheConsumer 67
5.8 Os_TaskPeriodic task . 69
5.9 RteTask task . 70

xvii

xviii LIST OF LISTINGS

Chapter 1

Introduction

Automotive industry has made a giant leap ahead over the past few decades. This is also true
for electric and electronics subsystems in cars, which used to be as simple as a few wires with
lightbulbs and switches. Later, as a new systems and technologies were developed, electronic
subsystems became more complex. Even systems which used to be operated with mechanical
linkages only, like throttle pedals, are now equiped with electronics and communicate over
the network with other systems (this type of control is also called drive-by-wire).

A typical modern car includes dozens of computer units called ECU (Electronic Control
Unit). These embedded devices are connected to sensors and actuators and are used to
operate a broad range of systems from seat heating and mirrors to brakes and engine fuel
injection. This increased count of devices in cars implied higher wiring requirements, so it was
necessary to develop vehicular bus which would efficiently and reliably interconnect various
electric and electronic subsystems in vehicles, which need to communicate in real-time.

Figure 1.1: Vehicular network in a modern car1

1Source: http://goo.gl/O4XOSx

1

2 CHAPTER 1. INTRODUCTION

A high level view of a modern car is illustrated in Fig. 1.1. As can be seen, there are
several such a networks which connect related systems together, each of them is based on
different bus technology. The most common types of buses in today’s car include CAN, LIN,
MOST and FlexRay. In this thesis, we focus on the CAN bus and on existing implementations
of the MaCAN protocol which is used to increase security of the CAN bus.

In order to reduce cost of the ECU software development and increase its scalability,
vehicle manufacturers and suppliers decided to standardize the ECU software functionality
by creating an open standard AUTOSAR. In this thesis, our efforts will be directed towards
integration of the MaCAN protocol into an open source implementation of the AUTOSAR
architecture.

1.1 Aims of this thesis

The main focus of this thesis is to:

1. Improve MaCAN documentation by clarifying ambiguities and adding description of
message formats, which are missing in the original paper [14] (see Chapter 3)

2. Test implementations of MaCAN protocol from different vendors together and docu-
menting the differences among them (see Chapter 4)

3. Port our MaCAN implementation to STM32 architecture (see Chapter 4)

4. Integrate our MaCAN protocol implementation into AUTOSAR architecture (see Chap-
ter 5)

Chapter 2

Related technologies

In this chapter, we describe technologies relevant to this work. First we focus on description
of the CAN bus, then we present its security extensions and finally we briefly describe the
AUTOSAR architecture.

2.1 CAN bus

One of the first buses used in cars was the CAN bus, developed in early 1980s by Robert
Bosch, GmbH. Despite of its long history and development of a new buses with higher speeds
and better real-time properties, like FlexRay, it is still used frequently today and remains
de facto standard in automotive industry.

CAN is a relatively simple bus and its specification covers only physical and link layer of
the standard ISO/OSI network model, making it a low level protocol. Latest specification
of the CAN bus, published in 1991, is CAN 2.0.

2.1.1 Physical layer

CAN network is usually arranged in line topology (as depicted in Fig. 2.1), which simplifies
overall design and allows easy addition or removal of ECUs. Logical values are encoded
into differential signals, which are defined as voltage difference between CAN-Lo and CAN-
Hi. Log. 1 is recessive (zero voltage difference) and log. 0 is dominant (non-zero voltage
difference).

A twisted two-wire line with terminating resistors (with resistance of 120 Ω) is used as
a communication medium. These resistors do not only serve to limit wave reflection, but
are essential components of the signaling system [21], since they maintain voltage difference
between both wires. If two different nodes apply different logical levels on the bus, the
dominant level will rule out the recessive one. This is used in bus arbitration described later.
Maximum speed defined by the standard is 1 Mbit/s. In practice, both low speed and high
speed buses are used together to interconnect subsystems based on their importance and
real-time demands.

3

4 CHAPTER 2. RELATED TECHNOLOGIES

Figure 2.1: CAN Network1

2.1.2 Link layer and communication concept

Nodes on the CAN network communicate using CAN frames (format illustrated in Fig. 2.2),
which can carry up to 8 bytes of data and are identified by their ID field (Arbitration field).
A typical data payload of the frame is a value of some signal and therefore IDs are associated
with signals rather then nodes. Value of the ID field also determines priority of the message.
There are two frame formats defined in the CAN 2.0 specification — standard frame format
with 11 bit CAN-ID (defined in CAN 2.0A) and extended frame format with 29 bit CAN-ID
(defined in CAN 2.0B).

Before transmitting, a node must assure, that the bus is idle (in recessive log. level).
Then it starts transmitting the frame and senses the bus state simultaneously. If two nodes
start transmitting at the same time, the one sending a frame with lower ID will win. The
reason is because lower ID always contains a bit which is set to 0, while higher ID will have
set this bit to 1. So the node sending frame with higher ID will sense log. 0, while sending
this bit, and must stop transmission process and wait until it can try again. This is called
the arbitration of the bus and guarantees, that high priority messages are send earlier than
low priority ones.

CAN also offers some basic error checking (CRC checksum, disconnection of faulty nodes)
and acknowledgement mechanisms, but does not support any security features by itself. This
gives rise to security problems and threats associated with networks based on CAN bus.
As more electronics systems are responsible for controlling critical systems in today’s cars,
security of communication between these systems became an important topic recently.

1Source: http://de.wikipedia.org/wiki/Controller_Area_Network

2.2. SECURITY PROBLEMS ON CAN BUS 5

Figure 2.2: CAN Frame2

2.2 Security problems on CAN bus

CAN bus without any security extensions poses several security concerns, which enable
attackers to read all the communications on the network, to send forged frames and to
prevent nodes from sending their frames.

2.2.1 Broadcast communication and plain data

As CAN frames do not include any recipient address, they are sent over the network as
broadcast messages. Every node connected to the network is able to receive every frame
and, typically, it then performs acceptance filtering based on the ID of the frame and decides
whether to process or drop the frame accordingly. This enables attackers to read all the
communications on the bus and infer format of the messages and underlying protocols used
for communication.

2.2.2 No authentication mechanism

Additionally, there is no way to prove authenticity of the message. This creates an opportu-
nity for an attacker, who knows the format of the messages (e.g. due to reasons described
above) to forge CAN frames and send them on the bus with an intent to override behavior
of the ECUs connected to the bus. All he needs to do is to connect a device capable of
communicating over CAN bus physically into vehicle’s network or reprogram some of the
existing ECUs. This is not hard task since diagnostic ports and interfaces offer access to
whole car network without any restrictions [22].

2.2.3 Bus jamming

Further security concern is related to CSMA/CR (Carrier Sense Multiple Access with Colli-
sion Resolution), a media access method used on the CAN bus. This method guarantees that
higher priority frames (those with lowest ID) are being sent first, but can cause that a low
priority frames might arrive late or might not even be sent in certain situations. This allows
an attacker to perform a denial of service attack by constantly flooding the bus with topmost
priority frames. Moreover, malicious frames with well set error flags can cause disconnection

2Source: http://en.wikipedia.org/wiki/CAN_bus

6 CHAPTER 2. RELATED TECHNOLOGIES

of every single node on the network, thanks to error tracking mechanism of the CAN bus
[22]. This problem is however not as severe, because due to safety concerns, all ECUs must
have a fail-safe mode that gets activated when communication fails.

2.2.4 Summary of CAN bus security problems

Putting together, CAN bus is not secure and is prone to various types of attacks. In an
extreme case, this may allow hijacking of the car, which might result even in death of
passengers. It is not hard and was proven it is possible to take control over steering, brakes
and other critical systems in a car by simply sending a high amount of messages (which get
accepted by the nodes because they arrive earlier then the legitimate ones) on the CAN bus
as described by Miller et al. [16]. In the paper they describe successful attacks on ECUs
connected to the CAN bus in Toyota Prius and Ford Explorer.

2.3 CAN bus extensions

For security problems mentioned in the previous section, there are standard solutions (like
MAC – Message Authentication Code) available. However, this solutions cannot be imple-
mented on the CAN bus directly, because it has many limitations, like maximum message
length (8 Bytes). Therefore in this section, we describe existing solutions for bandwidth
increase and for message authentication on the CAN bus.

2.3.1 Bandwidth increase extensions

With ever increasing complexity of a systems with many nodes connected together, develop-
ers started to hit the limits of the CAN bus. These limits do not only prevent adding further
nodes and signals, but also restrict use of a higher protocols, which present an additional
overhead.

Main restrictions of the CAN bus are number of identifiers limited to 2048 (applies only
for CAN 2.0A with 11 bit CAN-ID), maximum data payload length of 8 bytes and maximum
bitrate of 1 Mbit/s.

The bitrate cannot be easily increased, because propagation delay and oscillator inaccu-
racy would cause errors in the arbitration phase [23]. However when the arbitration phase
is over, only one node is transmitting. At this moment, increase of the bitrate is possi-
ble. Several extensions for CAN bus take the advantage of this fact to increase the overall
bandwidth.

2.3.1.1 CAN-FD

CAN-FD stands for CAN with Flexible Data-Rate. It is a new protocol introduced in 2012
by Bosch [11], designed to increase message throughput of the CAN bus. CAN-FD shares
physical layer with standard CAN, but introduces new four types of frame formats (see Table
2.1). CAN Base format is compatible with the standard CAN format.

CAN FD formats can carry up to 64 bytes of payload data and use different DLC (Data
Length Code) encoding scheme, since its length is only 4 bits, giving 16 possible values.

2.3. CAN BUS EXTENSIONS 7

Frame CAN-ID length Data length Bitrate
CAN Base Format 11 bits up to 8 bytes constant
CAN Extended Format 29 bits up to 8 bytes constant
CAN FD Base Format 11 bits up to 64 bytes dual
CAN FD Extended Format 29 bits up to 64 bytes dual

Table 2.1: CAN-FD message formats

Standard CAN uses only the first 9 values (0-8) to encode data length. This remains same
in CAN FD, however remaining 7 values are used to encode payload lengths up to 64 bytes.
This adds 7 further possible data lengths of 12, 16, 20, 24, 32, 48 and 64 bytes. DLC encoding
is controlled by extended data length (EDL) bit.

CAN-FD also supports faster bitrates controlled by bit rate switch (BRS) bit. Increased
alternate bitrate is used only when transmitting data payload. Arbitration phase is always
transmitted at the standard bitrate.

2.3.1.2 CAN+

CAN+ is an another protocol designed to increase bandwidth of the CAN bus described by
Ziermann et al. [23]. It uses communication scheme similar to time slots and can increase
maximum bitrate of 1 Mbit/s up to 16 times.

This protocol allows sending an additional 15 bits of data per standard data bit in the
CAN frame by inserting overclocked bits between synchronization zone and sampling zone
of the standard CAN bit (see Fig. 2.3). In this gray zone, bus can take any value without
disturbing standard CAN communication. This guarantees backward compatibility with
standard CAN, so it can be used in existing CAN networks.

Figure 2.3: Transmission of data bit for normal CAN and CAN+ protocol [23]

8 CHAPTER 2. RELATED TECHNOLOGIES

2.3.2 Security extensions

Security extensions for the CAN bus were developed recently to mitigate some of the risks
described in the previous chapter. Most of them focus on message authentication. Although
this does not encrypt contents of the CAN frames, it should guarantee the origin of the
message and prevent attackers from sending malicious frames. There are already some
authentication protocols used in other industry domains, but CAN is a very specific bus
with limited resources, so these protocols are often too heavyweight for this purpose.

Messages on the CAN bus have often hard real-time constraints. Introducing an authen-
tication protocol might influence real-time response of the system, since it adds a significant
overhead to the message transmission and processing. In the ideal case, the message should
be transmitted with its signature in the single CAN frame [18]. Since maximum payload
length of the CAN frame is 8 bytes, this presents significant restriction for the protocol de-
signers. Additionally, if the signatures were not transmitted along with the messages, new
CAN-IDs would have to be taken. This is not always possible, because there might not be
enough free CAN-IDs available in systems with many signals. Use of bi-directional protocols
would also rise the number of additional needed CAN-IDs, so most of the already proposed
protocols are unidirectional.

If message authentication protocol has to be as backward compatible as possible, it should
be compatible with the standard 8 byte frames and standard CAN specification, since new
standards like CAN-FD are not widely adopted in the industry yet.

2.3.2.1 CANAuth

CANAuth is a backward compatible, lightweight message authentication protocol for the
CAN bus described in the paper by A.V. Herrewege et al. [18]. It is designed to meet
basic requirements for message authentication protocol like message authentication, replay
attack resistance, group keys and backward compatibility, but should also meet restrictions
of the CAN bus. This includes the real-time constraints, message length, limited amount of
message IDs and unidirectional communication.

It uses CAN+ protocol to send the authentication data. Since data frames can be as
short as 1 byte, maximum length of the authentication message is limited to 15 bytes (120
bits). The CANAuth frame in Fig. 2.4 is used to carry the message authentication data. It
is divided into 8 status bits and 112 data payload bits.

8 bits︸ ︷︷ ︸
Status bits

112 bits︸ ︷︷ ︸
Payload

Figure 2.4: CANAuth frame

Each node in a communication group containing one sender and one or more receivers,
must store a pre-shared symmetric 128 bit key Kpi for each group of related messages in a
tamper-proof storage. To communicate, the nodes need to establish a session key Ksi in two
phases. In the first phase, the sender node sends a 24 bit counter value ctrAi and an 88 bit

2.4. AUTOSAR 9

random number ri, which nodes use to generate a session key using the HMAC (Keyed-hash
Message Authentication Code) algorithm:

Ksi = HMAC(Kpi, ctrAi || ri) mod 2128

Before the session key is accepted, the sender node is required to send the second message
with a 112 bit session key signature sigAi to prove, that the previous message originated at
the trusted sender node:

sigAi = HMAC(Ksi, ctrAi || ri) mod 2112

Once the session key was established, the messages can be authenticated by sending a
CANAuth frame with the 32 bit counter value ctrMi and the 80 bit signature sigMi obtained
using HMAC:

sigMi = HMAC(Ksi, ctrMi || msgi) mod 280

The counter value ctrMi is increased with every message being sent and serves as a
prevention against replay attacks. Once it overflows, a new session key should be established.
Security of the CANAuth protocol relies on the security of the used HMAC algorithm.

The main drawback of this protocol is that it needs a CAN+ capable controllers, which
prevents using it in nodes with standard CAN hardware without modification.

2.3.3 MaCAN

MaCAN (Message authenticated CAN) is a protocol proposed by Volkswagen group re-
searchers Oliver Hartkopp, Cornel Reuber and Roland Schilling in their paper [14]. Unlike
CANAuth, it is fully backward compatible with the existing technology. It allows to send
authenticated messages to the CAN bus, which can be verified by either a single node or a
group of nodes. Messages are signed using CMAC signature which is sent together with data
in the same CAN frame. Two new entities are introduced to the system – keyserver (KS)
and timeserver (TS). The keyserver is used to distribute the session keys to other nodes,
while the timeserver is used to maintain precise reference clock, which is used when signing
the signals to prevent replay attacks. Detailed description of this protocol can be found in
Chapter 3 and our implementation is described in Chapter 4.

2.4 AUTOSAR

AUTOSAR (AUTomotive Open System ARchitecture) is a worldwide development partner-
ship of car manufacturers, suppliers and other companies from the electronics, semiconductor
and software industry [2]. Its goal is to develop an open standard of the software architecture
and methodology for electronic control units used in automotive industry. It was established
in 2002 by BMW, Bosch, Continental, Daimler Chrysler and Volkswagen.

Organization structure is divided into Core Partners, who decide about the administra-
tion and organization control, Premium Partners who define the standard and Associative

10 CHAPTER 2. RELATED TECHNOLOGIES

members, who has access to the early development and can utilize AUTOSAR on royalty
free basis. In 2011, about 21 million ECUs were produced by AUTOSAR Core partners,
with 300 million planned for 2016 [1].

2.4.1 Motivation and goals

Complexity of the automotive electronics architecture reached level which requires definition
of a new software architecture, which will help to fulfil various requirements imposed on the
car manufacturers. These include legal enforcement requirements, passenger convenience
and driver assistance and dynamic drive aspects.

Leading OEMs and Tier-1 suppliers decided to cooperate together on the standard, which
addresses these requirements and has following goals in mind:

• Standardization of the basic software functionality of automotive ECUs

• Scalability to different vehicle and platform variants

• Transferability of the software between various types of ECU with as little hassle as
possible

• Modularity of the software components to enable adapting of the software according
to individual needs of ECUs

• Reusability of the software modules

The result of this cooperation is the AUTOSAR software architecture and methodology,
described in greater detail in Chapter 5.

Although partners cooperate on standards, they compete on implementation. There
are several vendors of AUTOSAR solutions, both commercial and open sourced. One of
the main vendors of the open source AUTOSAR solutions is Swedish company ArcCore.
It offers AUTOSAR embedded platform called Arctic Core and an integrated development
environment called Arctic Studio.

Chapter 3

MaCAN protocol

MaCAN – Message authenticated CAN is a cryptographic protocol proposed by O. Hartkopp
et al. [14] to increase security on the CAN bus. In this chapter, a detailed description of
this protocol is provided.

3.1 Introduction

MaCAN was created as reaction to continuous growth of interfaces in modern cars, while
still using a relatively basic networks based on the CAN bus. These networks are reliable and
suitable for real-time systems, but they offer no security features, like message authentication.
The protocol is designed to preserve real-time capabilities of the CAN bus and to be easily
implemented in a real CAN environment – it is fully backward compatible with existing and
deployed technology.

The basic idea is to provide a possibility to send an authenticated messages in a single
CAN frame, which can be verified by either a single receiving node or a group of receiv-
ing nodes. Either permanent signal authentication or on demand signal authentication is
possible.

3.2 Restrictions on CAN bus

Several restrictions apply when trying to add a message authentication capabilities to the
CAN bus, due to it’s properties.

3.2.1 Message length

Standard CAN frame has a payload length of 8 bytes. In order to send an authenticated 32
bit signal, only 4 bytes remain for the signature. Although CAN FD offers payload length
up to 64 bytes, MaCAN focuses on the standard CAN specification. The reasons are that
CAN FD is not as widespread as the standard CAN is.

11

12 CHAPTER 3. MACAN PROTOCOL

3.2.2 Available resources

The number of CAN identifiers as well as the bandwidth is limited. Use of a bidirectional
protocols on the CAN bus would requirem×n CAN-IDs, wherem is the number of nodes and
n the number of messages. As number of CAN-IDs is limited, this is a significant restriction
for protocol designers.

Bidirectional protocols based on challenge-response authentication also bring significant
overhead, that would limit available bandwith and therefore also real-time capabilities of the
bus.

3.3 Requirements

Following requirements apply for a security protocol to meet the restrictions outlined above.

3.3.1 Message authentication

As the number of ECUs responsible for critical functions in today’s cars is increasing, it is
necessary to be able to verify the origin of the messages. That means ECUs should not react
on forged messages sent by an attacker. Since most messages are highly time dependent,
the concept should also provide mechanism which will prevent an attacker from replaying
intercepted frames and guarantee freshness of the authenticated messages.

3.3.2 Real-time capabilities

Car network is highly real-time system with signals, which need to be delivered within their
hard deadlines. The security concept should preserve this real-time properties of the bus.
Some ECUs need to respond within milliseconds. If the signal signature would be spread
across multiple messages, it is not guaranteed that the ECU would be able to verify origin
of the signal within this time frame.

3.3.3 Flexibility

It should be possible to apply a message authentication to certain signals, while others may
need no protection. Additionally, it should be possible to authenticate individual signals on
demand, while preserving their real-time properties.

3.3.4 Backward compatibility

The concept should allow concurrent use of non-security equipped nodes with those able
to authenticate messages. This is important for implementation in the existing vehicular
networks. This means that signals that were previously defined on the network should be
accessible to all nodes, even after an authentication element was added to them.

3.4. CONCEPT 13

3.4 Concept

Due to the limited size of the payload in the CAN frame, Message Authentication Codes
(MACs) are used to sign messages. To better utilize hardware implementation, CMAC mode
is used. This mode uses a block cipher as a cryptographic element in MAC. It is based on
similar idea as symmetric cryptography, therefore all nodes willing to communicate together
must share the same group key. MaCAN allows authenticated communication between two
nodes as well as a group of nodes. In the group however, all nodes must agree on common
trust level, since all share the same group key.

3.4.1 MAC truncation

Due to limitations of the maximum payload in the CAN frame and the need to preserve
real-time capabilities, MAC signature is truncated to 32 bits. This makes it easier to guess,
but the number of guesses an attacker can perform is limited by a relatively low speed of
the CAN bus. Short lived session keys are used to additionally increase security level.

CMAC length depends on the block size of the used cipher. In case of AES, a quick block
cipher widely implemented in the hardware, it is 128 bits. Level of truncation depends on
how many guesses can an attacker perform during the lifespan of the session key. According
to [13] CMAC length should satisfy following inequality:

Tlen = lg

(
MaxInvalids

Risk

)
(3.1)

Tlen is the output length of CMAC and MaxInvalids is the number of attempts an
attacker can perform before validity of the session key expires. According to [13] the minimum
length of CMAC should be 64 bits. However, thanks to the low speed of the bus and short-
lived session keys, it can be truncated to 32 bits. One authentication attempt every 20 ms
results in 8640000 attempts during a maximum session key lifetime of 48 hours. According
to equation 3.1, 32 bit CMAC results in risk of 1 in 500 of guessing a single signature
during the lifetime of the key, yet still it is not guaranteed, that this forged message will be
accepted. Attempts at such a high frequency can be recognized by comparing the actual and
the expected message frequency on the bus and also by restricting the number of responses
to false signatures.

3.4.2 Authentication process

Since CAN frames with the same CAN-ID may be used carry more signals, two different
types of frames are presented. The first type is a dedicated frame containing only one signal,
its ID and its signature as the payload while preserving the original CAN-ID of the frame.
This can be used for a limited amount of signals, since more frames need to be send.

The Second type uses a dedicated CAN-ID in addition to an unauthenticated CAN
frame and contains a signal and its signature only. This type can be used for the on-demand
authentication of usually unauthenticated signals.

14 CHAPTER 3. MACAN PROTOCOL

3.4.3 Message freshness

As described above, use of bidirectional protocols as a way to protect the messages against
replay attacks is not an option. Use of a counter values as a source of freshness can also
be problematic, since ECUs might be unavailable for a number of reasons. Therefore, in
this concept, nodes use synchronized time to protect messages. To maintain synchronized
time, a timeserver (TS) is added to the system. It broadcasts current timestamp in a regular
intervals and can authenticate them upon request.

3.5 Prerequisites

A new identification token for all ECUs participating in a secure communication is defined.
This allows to addresses and identify individual nodes. It is defined as a 6 bit identifier called
ECU-ID with range from 0 to 63. Every node also shares a symmetric long-term key (LTK)
with the keyserver to allow a safe distribution of the session key. Authors of the protocol
recommend that the lifespan of the session key is 48 hours.

3.6 Protocols

In this section we describe the message format and three protocols used to sign signals,
distribute session keys and synchronize time on the CAN bus.

3.6.1 Message format

Since the standard CAN frame does not allow direct addressing, a new type of format, called
crypt frame is introduced (see Fig. 3.1). The CAN frame is not altered, crypt frame only
introduces new partitioning scheme of the CAN frame payload.

CAN-ID(src_id)︸ ︷︷ ︸
CAN-ID

0 0 dst_id︸ ︷︷ ︸
Data 0

Data︸ ︷︷ ︸
Data 1-7

Figure 3.1: Crypt frame

Every node uses a dedicated CAN-ID for the crypt frame, which is derived from its
ECU-ID using a lookup table. This allows the receiving node to identify the sender’s ECU-
ID (src_id) from the CAN-ID in the received crypt frame. Two flag bits are mapped to the
first two most significant bits in the first byte in the payload and are used to distinguish the
different message types in the newly introduced protocols. The rest 6 bits are used for the
destination node’s ECU-ID (dst_id).

3.6. PROTOCOLS 15

3.6.2 Signal authentication

If node ECUi wants to receive a signal SIG# from node ECUj , it must first send an
authenticated signal request to that node (see Fig. 3.2). Structure of the signal request
message is illustrated in Fig. 3.3. Depending on the Prescaler field, signed messages of a
periodic signals will be sent with frequency defined in Eq. 3.2. If the Prescaler is set to 0,
only next message will be signed. Signed messages do not replace the unsigned ones, but are
rather send in addition to them.

fsigned =
funsigned
Prescaler

(3.2)

ECUi ECUj

SIG. AUTH. REQ.: SIG, Presc., CMACskij (Time, idi, idj , SIG, Presc.)

AUTH. SIGNAL: Signal, CMACskij (Time, idi, idj , Signal)

Figure 3.2: Signal authentication

CAN-ID(src-id)︸ ︷︷ ︸
CAN-ID

1 1 dst_id︸ ︷︷ ︸
Data 0

SIG#︸ ︷︷ ︸
Data 1

PRESC.︸ ︷︷ ︸
Data 2

CMACskij
(Time, idi, idj , SIG, Presc.)︸ ︷︷ ︸

Data 3-6

unused︸ ︷︷ ︸
Data 7

Figure 3.3: Authenticated signal request message (SIG_AUTH_REQ frame)

At the design time, all signals must have assigned an 8 bit identifier, which is used to
specify the requested signal in the authenticated signal request. Signed signal can be sent in
two different formats:

• For 16 bit signals, crypt frame format with 32 bit signature is used (see Fig 3.4). In
this case the CAN-ID of the sending node is used (derived to its ECU-ID).

• For 32 bit signals, standard CAN frame with 32 bit signature is used (see Fig 3.5).
It requires a dedicated CAN-ID to be assigned to this signal at the design time, which
also serves as a signal identifier.

3.6.3 Key distribution protocol

To enable exchange of authenticated messages between a pair or a group of nodes, all par-
ticipants must share the same session key, which is valid only for a limited amount of time.

16 CHAPTER 3. MACAN PROTOCOL

CAN-ID(src-id)︸ ︷︷ ︸
CAN-ID

1 1 dst_id︸ ︷︷ ︸
Data 0

SIG#︸ ︷︷ ︸
Data 1

Signal︸ ︷︷ ︸
Data 2-3

CMACskij
(T, idi, idj , Sig)︸ ︷︷ ︸

Data 4-7

Figure 3.4: Crypt frame with 32 bit signature (AUTH_SIG frame)

Secure payload
CAN-ID︸ ︷︷ ︸
CAN-ID

Signal︸ ︷︷ ︸
Data 0-3

CMACskij
(T, idi, idj , Sig)︸ ︷︷ ︸

Data 4-7

Figure 3.5: Standard CAN frame with 32 bit signature

The key distribution protocol is used to safely distribute session keys along with a new entity
called keyserver (KS). The key distribution protocol is illustrated in Fig. 3.6. Challenge-
response authentication is used to guarantee the authenticity of the keyserver.

ECUi KS ECUj

CHALLENGE : Ci, idj

SESS.KEY : EnckKS
(Ci, idj , idi, SKij)

REQ.CHALLENGE

ACK : group field, CMACSKij (T, idi, idj , group field)

CHALLENGE : Cj , idi

SESS.KEY : EnckKS
(Cj , idi, idj , SKij)

ACK : group field, CMACSKji(T, idj , idi, group field)

ACK : group field, CMACSKij (T, idi, idj , group field)

Figure 3.6: Session key establishment

In the original MaCAN protocol specification, CMAC functions inside all ACK messages
in the session key establishment procedure are defined as CMACSKij (T, idj , group_field).

3.6. PROTOCOLS 17

This is however a security flaw, which might lead to situation, where ECUi believes that the
session key has been established, but ECUj has not received the session key [12]. We have
modified CMAC functions in the ACK messages according to corrections proposed in [12].

3.6.3.1 CHALLENGE message

Typically at startup, each node requests a session key from the keyserver for all commu-
nication partners or groups it wishes to communicate with. The process of obtaining the
key is started by sending a CHALLENGE message, which contains a 6 bit ECU-ID of the
communication partner and a 6 byte challenge (see Fig. 3.7).

CAN-ID(src-id)︸ ︷︷ ︸
CAN-ID

0 1 dst_id︸ ︷︷ ︸
Data 0

fwd_id︸ ︷︷ ︸
Data 1

Challenge︸ ︷︷ ︸
Data 2-7

Figure 3.7: Challenge message

The keyserver will then generate the session key, encrypt it (using the long-term key)
along with the received challenge and ECU-IDs of both participants in the communication
pair and send it back to the requesting node. Keyserver maintains the session keys and
generates a new one only if there is no previous session key, or when the current one has
expired. If this is not the case, current valid session key is sent upon key requests.

3.6.3.2 SESSION KEY message

An encryption key function is used to encrypt a 24 byte long plain text (challenge occupies
6 bytes, both ECU-IDs 2 bytes, session key 16 bytes). However when using AES-Wrap
algorithm to encrypt the session key, resulting cypher text will be 32 bytes long, because
AES-Wrap divides input text into n 64 bit blocks and the resulting cypher text is n+ 1 64
bit blocks long, as defined in [17]. Due to the limited length of the payload, this message
cannot be sent in a single CAN frame. Therefore, the message is split into several parts and
sent using format depicted in Fig. 3.8. Basically it is a crypt frame discussed earlier with
added byte consisting of 4 bit SEQ# value, which is a sequence number of the frame and a 4
bit MSG_LEN value, which corresponds to the payload length. Given that the maximum
payload length of this frame is 6 bytes, six frames must be sent by the keyserver to deliver
the wrapped key to the requesting node.

CAN-ID(src-id)︸ ︷︷ ︸
CAN-ID

0 1 dst_id︸ ︷︷ ︸
Data 0

SEQ# MSG
LEN︸ ︷︷ ︸

Data 1

Data︸ ︷︷ ︸
Data 2-7

Figure 3.8: Session key message format (SESS_KEY frame)

18 CHAPTER 3. MACAN PROTOCOL

3.6.3.3 ACK message

Once the wrapped key is received and decrypted, the requesting node will send the ACK
message to the communication partner or group. This step is needed to guarantee, that all
participants successfully received the session key and are ready to send/receive authenticated
messages. The format of the ACK message is illustrated in Fig. 3.9. It contains a 24 bit field
called group_field, which indicates which nodes the ECU is aware of sharing the session key
with. Each bit represents one node so the maximum number of nodes in one communicating
group is limited to 24.

The original paper does not specify exactly how nodes should be mapped to this field,
but at least two approaches are possible:

1. Each node in the communicating group is assigned to a fixed bit position in the
group_field. This information must be statically defined at design time for every
communication group and all nodes must share it.

2. Node’s bit is determined by taking the numeric value of its ECU-ID. If this value is
n, then n-th bit in group_field corresponds to that node. This is suitable only for
networks with maximum of 24 nodes. Also nodes need to have their ECU-IDs in range
0–23.

If another ECU already shares its key, but does not find itself in the received ACK
message, it transmits its own ACK message with its bit set to 1. Every time an ECU
receives the ACK message, it internally marks nodes found in group_field as ready. Once
all partitioning nodes are marked as ready, secure communication channel is established.

CAN-ID(src-id)︸ ︷︷ ︸
CAN-ID

0 1 dst_id︸ ︷︷ ︸
Data 0

︸ ︷︷ ︸
Data 1-3

CMAC︸ ︷︷ ︸
Data 4-7

Figure 3.9: Session key message format

3.6.3.4 REQUEST CHALLENGE message

Once the keyserver has sent the session key to the requesting node, it notifies the other
participating node(s) with REQ_CHALLENGE message. The format of this message is not
specified in the original paper, but one of the possible variants is depicted in Fig. 3.10. It is
almost the same as the CHALLENGE message, but the Challenge field is unused.

3.6.3.5 Groups of nodes

All members of one communication group share the same session key. This can lead to
problems as some node can assume role of any other member of the same group. There-
fore authors of the original paper suggest to form the groups based on the trust level of

3.6. PROTOCOLS 19

CAN-ID(src-id)︸ ︷︷ ︸
CAN-ID

0 1 dst_id︸ ︷︷ ︸
Data 0

fwd_id︸ ︷︷ ︸
Data 1

unused︸ ︷︷ ︸
Data 2-7

Figure 3.10: Challenge message

their members. This can prevent some less trustworthy device to forge signals of some well
protected ECU.

Each group is assigned a 6 bit Group-ID (similar to ECU-ID) and the keyserver as well as
every member of the group has the list of the group members as well as their ECU-IDs. If a
node requests a session key for the communication with other node, it first checks if this node
is a member of the same group. If this is the case, it requests key for the common Group-ID.
As the keyserver is aware of the members in all groups, it will send the REQ_CHALLENGE
messages to every member of this group, so all members can request the session key.

Each node in the group still uses its ECU-ID as its src_id. Group-ID is used only in
dst_id and fwd_id fields, so nodes need to filter messages on the bus addressed to their
own ECU-ID or to the Group-ID.

3.6.4 Authenticated time distribution protocol

In order to assure freshness of the authenticated messages and prevent replay attacks, each
node is equipped with an internal counter, which maintains current time. This time is then
used as one of the inputs to the CMAC function. The problem of counter inaccuracy and
synchronization (e.g. after ECU restart or wake up) is solved by adding a new entity called
timeserver (TS). Its purpose is to maintain and provide a reliable, precise, monotonically
increasing time signal to all nodes on the network and provide authenticated time upon
request.

Timeserver broadcasts the current 32 bit timestamp to bus in periodic intervals. Every
node is able to receive this time signal and compare the timestamp value with its internal
counter. If the two values differ more than a certain limit, resynchronization is necessary.
This can happen after ECU reboot or just because the internal timers of the ECUs drifted
away from each other. The format of the plain time message is illustrated in Fig. 3.11.

CAN-ID(src-id)︸ ︷︷ ︸
CAN-ID

Time︸ ︷︷ ︸
Data 0-3

Figure 3.11: Plain time message

Authenticated time distribution protocol is used to request authenticated time from the
timeserver and is illustrated in Fig. 3.12.

First, the requesting node sends the challenge message to the timeserver. The format
of this message is the same as in the key distribution protocol (see Fig. 3.6) and fwd_id is
set to 0. Time server then replies with the last broadcasted timestamp together with the

20 CHAPTER 3. MACAN PROTOCOL

ECUi TS

CHALLENGE : Ci, fwdid = 0

Timet−1, CMACSKji(Ci, T imet−1)

Figure 3.12: Signal authentication

signature (a challenge-response authentication is used since we cannot use time as input for
this signature). The format of this authenticated time message is illustrated in Fig. 3.13.
Plain time frame and authenticated time frame can be distinguished by different data length
code of the message. If an attacker tries to forge a plain time message to alter time of the
ECU, he will not be able to reply with the authenticated time message, so ECUs are able to
detect this attack and ignore attacker’s message.

Group keys should not be used in an authenticated time distribution protocol, since
the integrity of the CHALLENGE message cannot be verified by all members of the group.
Every node must request signed time individually, using its ECU-ID, when synchronization
is necessary.

CAN-ID(src-id)︸ ︷︷ ︸
CAN-ID

Time︸ ︷︷ ︸
Data 0-3

CMACsktsi
(Ci, T imet−1)︸ ︷︷ ︸

Data 4-7

Figure 3.13: Authenticated time message

If there were only one recipient of the time signal or one group with common session
key, it would not be necessary to use challenge-response protocol. After the initial challenge
and response step, time signal could be broadcasted together with its signature. However, if
there were more ECUs, the timeserver would have to broadcast n different authenticated time
messages for every point in time, since every nodes requires its own signature. This would
decrease precious available bandwidth on the bus, so authors decided to use the approach
described above.

Chapter 4

MaCAN implementation

In this chapter, we describe two implementations of the MaCAN protocol: one developed at
CTU and another one created by Volkswagen. We also describe how we tested interoper-
ability of these implementations and present a list of found incompatibilities. Later in the
chapter, we describe the process of porting of CTU implementation to the STM32 platform.
In the end, a memory and CPU usage analysis of the CTU implementation is presented.

During creation of this work, we have contributed to development of the CTU implemen-
tation. We have found and fixed several minor bugs, added new features (like support for
32 bit signals) and cleaned up the code.

4.1 CTU MaCAN implementation

Our implementation of the MaCAN protocol was created by people from the Department of
control engineering at Czech Technical University in Prague and is implemented according
to a paper by Oliver Hartkopp and Roland Schilling [14]. The implementation is written in
the C language and currently supported platforms include GNU/Linux and Infineon TriCore
TC1798. The project is divided into several, relatively independent parts: MaCAN library,
keyserver, timeserver and MaCAN monitor. The source code is available in a Git repository
at https://github.com/CTU-IIG/macan.

4.1.1 License

The main part of the project is incensed under the GNU General Public License, v2.0. There
is however some code for the TriCore TC1798 platform, which has a proprietary license and
is not included in the repository mentioned above. This code contains a low level routines for
handling CAN controllers and hardware cryptographic accelerator/coprocessor SHE (Secure
Hardware Extension) on the TriCore TC1798 processor.

4.1.2 MaCAN library

The MaCAN library is a core part of the project and is statically linked to any node (incl.
the keyserver and the timeserver) participating in the MaCAN communication. Library’s

21

22 CHAPTER 4. MACAN IMPLEMENTATION

public API is defined in the macan.h file, which is included in every node’s source code.
The node then calls library functions from its main function (or any other functions). The
implementation of the node’s source code is responsibility of the programmer, who may
design it as a command line program or a GUI application etc. The MaCAN library is
available on both GNU/Linux and TriCore TC1798 platform.

4.1.2.1 Usage of the library

Before any communication with other nodes can happen, the node must first initialize its
hardware (mainly the CAN controller). In order to simplify this task, the MaCAN library
contains a low level initialization routines wrapped in the helper_init function. This func-
tion is platform dependent. On GNU/Linux, it takes as the only argument the name of
the CAN interface and returns a file descriptor of a SocketCAN socket. In case of TriCore
TC1798, it simply initializes the CAN controller and the SHE (used for AES encryption/de-
scription), without taking any input parameter.

Once the hardware is initialized, the application must initialize the library by calling the
macan_init function. This function requires four input parameters:

• struct macan_ctx *ctx – a pointer to a variable holding the “context” structure.
This structure is used to hold the configuration and the runtime information. During
initialization, this structure is populated with a data needed by the internal functions.
The application is responsible for allocating the variable to hold the structure and
passing its pointer when calling functions from the library.

• const struct macan_config *config – a pointer to a variable holding the static
configuration structure. The configuration is described in a greater detail later in
section 4.1.6.1.

• macan_ev_loop *loop – an event loop used for periodic calls of the functions. The
library uses this concept to poll CAN FIFO and to call the internal housekeeping func-
tion, which checks if the current session keys are still valid. The application usually
uses a predefined macro MACAN_EV_DEFAULT as the value of this parameter. Addition-
ally, it may use the event loop for periodic calls of its own functions. The functions
can be registered by calling macan_ev_timer_setup function.

• int sockfd – a file descriptor of the opened SocketCAN socket. Applies only to
GNU/Linux, it is ignored on the TriCore TC1798.

After the initialization of the library, the application must register a signal callback
functions by calling the macan_reg_callback function, in order to receive signals. This
function requires a pointer to the context variable, ID of the signal and pointers to two
functions. The first one is called upon successful reception of the signal, the second is called
when the calculated CMAC differs from the one received with the signal.

To send signals, the application simply calls the function macan_sen_sig, which requires
a pointer to the context variable, ID of the signal, and the value of the signal. The node
may use the event loop to send signals periodically.

4.1. CTU MACAN IMPLEMENTATION 23

Once all previous configuration steps are done, the node starts the event loop by calling
the macan_ev_start function. The library now automatically handles all tasks needed in the
MaCAN communication (like session key exchange, sending and processing of ACK messages,
signed time requests, signals signing and verification etc.) without any intervention from the
application. The application now interacts with the library only if it wishes to send a signal
or the library receives the signal and notifies the application via a callback function.

4.1.3 Keyserver

The project contains implementation of the keyserver, which is similar to a normal node,
but uses a slightly different initialization and is used to maintain the session keys. The
keyserver must know long-term keys (LTK) of all nodes participating in the communication.
Under GNU/Linux, configuration and LTK keys are loaded from a shared objects, whose
names are passed as a command line parameters (see Table 4.1). This approach allows using
the same keyserver binary in multiple projects, without the need to recompile it when the
configuration or a LTK key is changed.

Parameter Description
-c Path to a shared object with configuration
-k Path to a shared object with LTK keys of all nodes

Table 4.1: Keyserver command line options

4.1.4 Timeserver

The timeserver is very similar to the keyserver described above. It periodically sends plain
time and responds to a signed time requests. It also needs the configuration and its LTK
key to run (command line parameters are listed in Table 4.2).

Parameter Description
-c Path to a shared object with configuration
-k Path to a shared object with timeserver’s LTK key

Table 4.2: Timeserver command line options

4.1.5 MaCAN monitor

MaCAN monitor is a command line debugging tool used during development of our imple-
mentation. It reads CAN traffic on a specified interface and is able to interpret MaCAN
specific frames. Besides printing the contents of a CAN frame, it also colorizes different
groups of frames. Because it has access to the configuration (via a -c command line option),
it is also able to print additional information like sending or receiving node’s name. The
MaCAN monitor is available on the GNU/Linux platform only.

24 CHAPTER 4. MACAN IMPLEMENTATION

4.1.6 Configuration

Configuration is used to describe configuration of a MaCAN network. It contains a descrip-
tion of nodes participating in the communication, signals being sent between the nodes, LTK
keys and configuration options used to initialize the library. The configuration is written
directly in C code in a separate file, which is linked into MaCAN applications and also com-
piled to a shared object for use by keyservers and timeservers (see above). The configuration
can be divided into node configuration, signal configuration and protocol configuration.

4.1.6.1 Protocol configuration

Protocol configuration is used to set various communication options of the library and to
hold pointers to the previously defined node and signal configurations. Everything is stored
in the macan_config structure. Members of the structure are summarized in Table 4.3. Most
of the members are common to all nodes in MaCAN network, but some are node specific,
like node_id or ltk. These node specific options are set during runtime by each node. The
configuration is stored in a separate file and compiled together with the node. Additionally
it is also compiled to a shared object, which is needed by the keyserver, the timeserver and
the MaCAN monitor. In order to load the configuration from a shared object, the variable
holding the main configuration structure must be always named as config.

Data type Struct member Description
macan_ecuid node_id ECU-ID of the node
struct macan_key * ltk Pointer to LTK key
uint32_t sig_count Number of signals in sig_spec
struct macan_sigspec sig_spec Signal specification (see Table 4.4)
uint8_t node_count Number of nodes (ECUs) in the network
struct macan_can_ids * canid CAN-IDs used by MaCAN (see Table 4.6)
macan_ecuid key_server_id ECU-ID of the keyserver
macan_ecuid time_server_id ECU-ID of the timeserver
uint32_t time_div Number of µs in one MaCAN time unit
uint64_t skey_validity Session key expiration time [µs]
uint32_t skey_chg_timeout Session key request timeout [µs]
uint32_t time_timeout Authenticated time timeout [µs]
uint32_t time_delta Max. time difference from TS time [µs]

Table 4.3: Main configuration structure

4.1.6.2 LTK keys

Long term keys are used by nodes to request a session key from the keyserver. They are
stored in the macan_key structure, which contains a 16 byte data section for holding the key.
Each key is defined in a separate file and compiled together only with the node it belongs to.
This is done for a security reasons, so other nodes cannot get access to session keys, which

4.1. CTU MACAN IMPLEMENTATION 25

do not belong to them. All LTK keys are also compiled to a shared object, which is needed
by the keyserver. A LTK key for the timeserver must also be compiled to a shared object
and passed via a command line parameter as described earlier. In order to load key from
the shared object, its name must be in the form of macan_ltk_nodeX where X is ECU-ID of
the node. An example of an LTK key definition is illustrated in Listing 4.1.

const struct macan_key macan_ltk_node1 = {
.data = { 0x28, 0xC9, 0xBF, 0x10, 0x3C, 0x70, 0xAA, 0xE0,

0x32, 0x08, 0xEA, 0x9B, 0x45, 0x1D, 0x11, 0x6C}
};

Listing 4.1: Example of a LTK definition

4.1.6.3 Signal configuration

Every signal in a MaCAN network must have and ID assigned. IDs of the signals are assigned
in a similar way as ECU-IDs to nodes, i.e. using an enum block. Signal properties are specified
in an array of macan_sig_spec structures (members listed in Table 4.4). The key of each
entry in this array is ID of the signal to which the specification belongs. Each signal must
have defined ECU-ID of both sender and receiver. The type of the signal and frames used for
its transmission are determined according to values of the can_nsid and can_sid members.
The value of 0 specifies that the particular type of the frame is not used for this signal. All
possible types of signals are listed in Table 4.5.

Data type Struct member Description
uint16_t can_nsid Non-secure CAN-ID
uint16_t can_sid Secure CAN-ID
uint8_t src_id ECU-ID of node dispatching this signal
uint8_t dst_id ECU-ID of node receiving this signal
uint8_t presc Prescaler

Table 4.4: Members of the macan_sig_spec structure

can_nsid can_sid Max. signal size Frame type used to transmit the signal
0 0 16 bit crypt frame with 32 bit signature (see Fig. 3.4)
0 non-zero 32 bit standard CAN frame with 32 bit signature

(see Fig. 3.5)
non-zero 0 16 bit standard CAN frame without MAC

or crypt frame wit 32 bit signature
non-zero non-zero 32 bit standard CAN frame without signature

or standard frame with 32 bit signature

Table 4.5: Frame types for signal transmission

26 CHAPTER 4. MACAN IMPLEMENTATION

The first two types of signals in this table are sent always signed, so the presc value
has no effect. However the last two types use a standard CAN frames without signature.
A signed version of the signal is sent along with the unsigned one only every x-th call of
the macan_send_sig function, where x is the value of the presc or when requested with
SIG_AUTH_FRAME (see Fig. 3.3).

4.1.6.4 Node configuration

Every node in the MaCAN network must have an ECU-ID assigned. This is for convenience
done with a simple enum block, so nodes get a gradually increasing ECU-IDs by default
and also the total count of nodes can be easily determined. The macan_can_ids structure
(members listed in Table 4.6) is used to hold an array of macan_ecu structures (members
listed in Table 4.7), which map node ECU-IDs to CAN-IDs. ECU-ID is used as index in
the array. The structure also contains a member called time to specify the CAN-ID of the
plain time message, which is different from the CAN-ID used by the timeserver to request a
session key from the keyserver.

Data type Struct member Description
uint32_t time CAN-ID of the plain time message
struct macan_ecu * ecu Pointer to ECU-ID to CAN-ID map

Table 4.6: Members of the macan_can_ids structure

Data type Struct member Description
uint32_t canid CAN-ID of the crypt frames sent by the node
const char * name Name of the node (used by the MaCAN monitor)

Table 4.7: Members of the macan_ecu structure

4.1.7 Compilation on GNU/Linux

On GNU/Linux, MaCAN uses Ocera Make System (http://rtime.felk.cvut.cz/omk/).
This system is written in GNU Make and uses multiple simple makefiles spread across di-
rectories. The root directory for compilation on GNU/Linux is build/linux. It contains
the top level Makefile.omk, which specifies subdirectories to be traversed. These directo-
ries contain another Makefile.omk files, which specify “programs” and their source files and
dependencies. Common settings, like compilation flags are specified in the config.target
file. Compilation is started by running make command. Intermediate results of the compi-
lation (object files) are stored in the _build directory and linked binaries are stored in the
_compiled directory. Libraries, that must be installed on the system include Nettle1 and
libev2.

1Available at: http://www.lysator.liu.se/ñisse/nettle/
2Available at: http://software.schmorp.de/pkg/libev.html

4.2. VOLKSWAGEN IMPLEMENTATION 27

4.1.8 Compilation for TriCore TC1798

Compilation for TriCore TC1798 is done using TASKING VX-Toolset for TriCore, a pro-
prietary IDE based on Eclipse from Altium. This IDE contains everything needed for com-
pilation for the TriCore platform. Our implementation uses a low level CAN drivers from
AUTOSAR MCAL implementation from Infineon. The configuration of those drivers is done
using EB tresos tool from Elektrobit. Configuration process results in automatic generation
of source files that are included together with MaCAN sources in a project in TASKING
VX-Toolset. The IDE produces a single ELF binary which is downloaded to the board via
USB. The TASKING VX-Toolset project file is located in the infineon-proprietary di-
rectory. To import the project, select File – Import – Existing Projects into Workspace and
navigate to the directory mentioned above.

4.2 Volkswagen implementation

Volkswagen provided us with a proof-of-concept implementation that runs on GNU/Linux
and contains a keyserver, a timeserver and a gateway. The gateway is used to protect a
legacy ECU, that is not capable of MaCAN communication. This ECU shares a private
CAN bus with the gateway. The gateway adds MACs to frames intercepted on the private
CAN bus and forwards them to a public CAN bus, shared with other nodes. Conversely,
authentic frames (with valid CMAC) are intercepted on the public CAN bus are forwarded
to the private CAN bus as plain messages.

4.2.1 Configuration

The configuration is done using a combination of plain text configuration files and a command
line parameters. There are two kinds of configuration files, one describes nodes and the
other describes signals. Configuration files are written in the JSON format and each node
and signal is represented by a JSON object (an unordered collection of name/value pairs).
Available options for node description are listed in Table 4.8 and for signal description in
Table 4.9. Each node must have its own configuration file, but most of its content is the
same, except the ltk field. For example configuration, see our volkswagen demo described
later.

Option Description
can_id CAN-ID of the messages sent by this node
bus Name of CAN bus, where MaCAN communication takes place
crypt_id ECU-ID of the node
name Name of the node
group_id Group-ID of the group
key LTK shared with this node

Table 4.8: Available options for a JSON object describing a node

28 CHAPTER 4. MACAN IMPLEMENTATION

Option Description
owner ECU-ID of the sending node
src CAN-ID of the signal on a private CAN bus
dst CAN-ID of the signal on a public CAN bus
sigid ID of the signal
startbyte First byte of bytes to be signed
length Length of bytes to be signed
orig_length Length of the signal in an unsigned CAN frame

Table 4.9: Available options for a JSON object describing a node

4.2.2 Command line tools

The keyserver, the timeserver and the gateway are command line tools, that accept command
line parameters listed in Tables 4.10, 4.11 and 4.12. The gateway is controlled with commands
from keyboard (listed in Table 4.13).

Parameter Description
-l Time before the session key expires in sec.
-f Path to a node configuration file
-k ECU-ID of the keyserver

Table 4.10: VW keyserver command line options

Parameter Description
-l Time before the session key expires in sec.
-t ECU-ID of the timeserver
-f Period of the time signal in sec.
-c Path to a node configuration file

Table 4.11: VW timserver command line options

4.3 Testing

We have created a set of demos to test the functionality of our MaCAN implementation
and its compatibility with the Volkswagen implementation. Demos are located in the demos
directory and each demo contains implementation of node(s) which use the MaCAN library,
a configuration and helper scripts.

On GNU/Linux, all demos will be compiled by default by the make command invoked
from the build/linux directory. The compilation produces multiple binaries for each com-
munication node in the demo and common keyserver and timeserver binaries. Each demo

4.3. TESTING 29

Parameter Description
-t Time before the session key expires in sec.
-o Own ECU-ID of the node
-b Public CAN interface
-e Private CAN interface
-k Key exchange CAN interface
-c Path to a node configuration file
-s Path to a signal configuration file
-r Request signals (sig_id:prsc)

Table 4.12: VW gateway command line options

Command Description
key:01 Request session key for communication with node, whose ECU-ID = 1
time Request signed time
req_auth:0c:1 Authentized request for signal ID = 0c with prescaler = 1

Table 4.13: VW gateway command line options

contains the test subdirectory with a set of helper scripts written in BASH (see Table 4.14),
which can be used to launch the nodes, the keyserver and the timeserver without worrying
about command line parameters or location of the binary files. All nodes can run on one
computer even without presence of a physical CAN bus. This is achieved by using a virtual
CAN interface.

For TriCore TC1798, only one demo can be compiled at a time, so files from others demos
must be manually excluded from the build. Since there is no operating system implemented
for this platform, only one node can be running on the board.

Script Description
init-vcan.sh Initializes a virtual CAN interface
init-can.sh Initializes a physical CAN interface
ks.sh Launches the keyserver
ts.sh Launches the timeserver
nodeX.sh Launches node with ECU-ID = X

Table 4.14: Helper scripts available in demos

4.3.1 4signals demo

The 4signals demo was created to test all possible signal types listed in Table 4.5. This
demo contains nodes listed in Table 4.15 and signals listed in Table 4.16. The CAN net-
work is illustrated in Fig. 4.1. There are two 32 bit and two 16 bit signals with different
prescalers being sent from NODE1 to NODE2. Configuration of the demo is specified in the

30 CHAPTER 4. MACAN IMPLEMENTATION

macan_config.c file (see Listing 4.2).

KS TS NODE1 NODE2

can0

Figure 4.1: CAN network in the 4signal demo

Node name Crypt-frame CAN-ID ECU-ID
KS 0x101 0x0
TS 0x102 0x1
NODE1 0x103 0x2
NODE2 0x104 0x3

Table 4.15: Nodes in the 4signals demo

Signal ID Source Destination Non-secure CAN-ID Secure CAN-ID
SIGNAL_A 0 NODE1 NODE2 none none
SIGNAL_B 1 NODE1 NODE2 none 0x202
SIGNAL_C 2 NODE1 NODE2 0x113 none
SIGNAL_D 3 NODE1 NODE2 0x114 0x204

Table 4.16: Signals in the 4signals demo

enum node_id {
KEY_SERVER, TIME_SERVER, NODE1, NODE2, NODE_COUNT

};
enum sig_id {

SIGNAL_A, SIGNAL_B, SIGNAL_C, SIGNAL_D, SIG_COUNT
};

const struct macan_can_ids demo_can_ids = {
.time = 0x000,
.ecu = (struct macan_ecu[]){
[KEY_SERVER] = {0x100, "KS"},
[TIME_SERVER] = {0x101, "TS"},
[NODE1] = {0x102, "N1"},
[NODE2] = {0x103, "N2"},

},
};

4.3. TESTING 31

struct macan_sig_spec demo_sig_spec[] = {
[SIGNAL_A] = {.can_nsid = 0, .can_sid = 0,

.src_id = NODE1, .dst_id = NODE2, .presc = 0},
[SIGNAL_B] = {.can_nsid = 0, .can_sid = 202,

.src_id = NODE1, .dst_id = NODE2, .presc = 0},
[SIGNAL_C] = {.can_nsid = 113, .can_sid = 0,

.src_id = NODE1, .dst_id = NODE2, .presc = 2},
[SIGNAL_D] = {.can_nsid = 114, .can_sid = 204,

.src_id = NODE1, .dst_id = NODE2, .presc = 5}
};
struct macan_config config = {

.sig_count = SIG_COUNT,

. sigspec = demo_sig_spec,

.node_count = NODE_COUNT,

.canid = &demo_can_ids,

.key_server_id = KEY_SERVER,

.time_server_id = TIME_SERVER,

.time_div = 1000000,

.skey_validity = 60000000,

.skey_chg_timeout = 5000000,

.time_timeout = 1000000,

.time_delta = 1000000,
};

Listing 4.2: 4signals demo configuration

4.3.2 1signal demo

The 1signal demo is based on 4signals demo described above, but contains only one 32 bit
signal (SIGNAL_B). It was created as a simplest possible configuration, used mainly in early
stages of porting to a new platforms. Later, to test both directions of the communication,
we have added a second signal of the same type, but sent from NODE2 to NODE1.

4.3.3 Volkswagen demo

The Volkswagen demo was created to test our implementation of the MaCAN protocol with
the prototype implementation from Volkswagen. We have created a test communication
scenario (see Fig. 4.2), with nodes listed in Table 4.17 and signals listed in Table 4.18. A
blue colored nodes are from the Volkswagen implementation and the only red colored node
is from our implementation. As a substitution for an additional node representing the legacy
ECU connected to a private vw_can bus, we have used tools from the can-utils package.
The candump tool is used to read CAN frames and the cangen is used to generate CAN
frames.

32 CHAPTER 4. MACAN IMPLEMENTATION

KS TS NODE_VW
(macangw) NODE_CTU

candump cangen

can0

vw_can

Figure 4.2: CAN network in the volkswagen demo

Node name Vendor CAN-ID ECU-ID Config files
KS VW 0x101 0x1 ks.json
TS VW 0x102 0x2 ts.json
NODE_VW VW 0x103 0x3 ecuvw.json and signals_ecuvw.json
NODE_CTU CTU 0x104 0x4 macan_config.c

Table 4.17: Nodes in the volkswagen demo

Signal ID Source Destination Non-secure CAN-ID Secure CAN-ID
SIGNAL_VW 0 NODE_VW NODE_CTU none 0x2C1
SIGNAL_CTU 1 NODE_CTU NODE_VW none 0x2D1

Table 4.18: Signals in the volkswagen demo

{"can_id":"101","bus":"any","crypt_id":"01","name":"ks","group_id":"00","key":""}
{"can_id":"102","bus":"any","crypt_id":"02","name":"ts","group_id":"00",
"key":"F16F3D70A3125F9D72929218C230F37B"}

{"can_id":"103","bus":"can0","crypt_id":"03","name":"ecuvw","group_id":"00",
"key":"0C15D394CBCD4518411B6368AF5060D1"}

{"can_id":"104","bus":"can0","crypt_id":"04","name":"ecuctu","group_id":"00",
"key":"000102030405060708090A0B0C0D0E0F"}

Listing 4.3: ks.json file

{"can_id":"101","bus":"any","crypt_id":"01","name":"ks","group_id":"00",
"key":"0C15D394CBCD4518411B6368AF5060D1"}

{"can_id":"102","bus":"any","crypt_id":"02","name":"ts","group_id":"00","key":""}
{"can_id":"103","bus":"can0","crypt_id":"03","name":"ecuvw","group_id":"00","key":""}
{"can_id":"104","bus":"can0","crypt_id":"04","name":"ecuctu","group_id":"00","key":""}

Listing 4.4: ts.json file

4.4. COMPATIBILITY WITH VOLKSWAGEN IMPLEMENTATION 33

{"can_id":"101","bus":"any","crypt_id":"01","name":"ks","group_id":"00",
"key":"0C15D394CBCD4518411B6368AF5060D1"}

{"can_id":"102","bus":"any","crypt_id":"02","name":"ts","group_id":"00","key":""}
{"can_id":"103","bus":"can0","crypt_id":"03","name":"ecuvw","group_id":"00","key":""}
{"can_id":"104","bus":"can0","crypt_id":"04","name":"ecuctu","group_id":"00","key":""}

Listing 4.5: ecuvw.json file

{"owner":"03","src":"2C1","dst":"2C1","sigid":"00","startbyte":"0","length":"4",
"orig_length":"4"}

{"owner":"04","src":"2D1","dst":"2D1","sigid":"01","startbyte":"0","length":"4",
"orig_length":"4"}

Listing 4.6: signals_ecuvw.json file

4.3.3.1 Running the volkswagen demo

To run the demo, we have to start the keyserver, the timeserver and both nodes. Additionaly
we also need to generate frames with the cangen tool and read frames with the candump tool.
The demo is run with the following commands:

./macanks -l 5000 -f ks.json -k 01

./macants -l 5000 -t 02 -k 01 -f 1 -c ts.json

./macangw -o 3 -t 5000 -b can0 -e vw_can -k can0 -c ecuvw.json \
-s signals_ecuvw.json

./ctu-node

./candump vw_can

./cangen vw_can 2c1 -Di -L4 -g 1000

Unlike our node, which automatically requires session keys and sends authorized signal
requests, the gateway is controlled via keyboard. To request a session for communication
with the timeserver and our node and to request a signal, we need to type (or use input
redirection) following commands on a standard input:

key:2
key:4
time
req_auth:1:1

4.4 Compatibility with Volkswagen implementation

During testing, we have found, that both implementations contain mutual incompatibili-
ties, which prevent using these two implementations together without modifications. Some
incompatibilities were caused by bugs in our implementation, but some were also caused
because the Volkswagen implementation is not implemented exactly according to specifica-
tion in [14]. In order to make these two implementations operate together, we had to find

34 CHAPTER 4. MACAN IMPLEMENTATION

the incompatibilities and modify the code of our implementation. We have introduced a
new macro VW_COMPATIBLE which, when defined, puts our implementation into compatibil-
ity mode with the Volkswagen implementation. Incompatibilities found during the testing
are described in the following subsections.

4.4.1 Incorrect value of MSG_LEN field

In the SESS_KEY message frame sent by the keyserver, there is a field named MSG_LEN
which contains length of DATA payload in this frame. The keyserver sends incorrect value
of this field in the last (sixth) frame. In this last frame, there are only 2 bytes of data, so
the value of MSG_LEN field should equal to 2, however the VW keyserver sets it to 6.

4.4.2 Different order of fields in wrapped session key

The keyserver wraps session keys using AES-Wrap algorithm and sends it in multiple SESS_KEY
frames to nodes. The actual input to the keywrap function in not only the session key, but
also other data. The paper specifies the order of fields to be the following: (Ci, idj , idi, SKi_j).
Volkswagen implementation wraps all these fields, but in different order: (SKi_j , Ci, idj , idi).

4.4.3 Different order of fields when computing CMAC

CMAC is used to sign frames containing data which are required to be secure. The CMAC
algorithm expects the data and a session key on input and outputs the message authentication
code, which is stored into the CAN frame. Volkswagen implementation uses different input
data for the CMAC function, when sending these two types of frames:

• Signed time frame (see Fig. 3.13)
Paper: CMAC(C, T ime), implementation: CMAC(Time,C,CanIDts)

• Secure 32bit signal (see Fig. 3.5)
Paper: CMAC(Time, idi, idj , Sig), implementation: CMAC(Sig, T ime,CanIDsig)

CanIDts is the CAN-ID of the timeserver and CanIDsig is the secure CAN-ID of the signal.

4.4.4 Missing CMAC field in signal request message

The CMAC is completely missing in the signal requests from macangw.

4.4.5 Absence of ACK messages

Node, which received the session key, should ensure that all communication partners al-
ready have session keys. According to [14] this should be accomplished by ACK messages.
Volkswagen implementation sends no ACK messages after receiving the session key.

4.5. PORTING TO STM32 PLATFORM 35

4.4.6 REQ_CHALLENGE frame format

REQ_CHALLENGE is a message sent by the keyserver. However format of this message
is not specified in [14]. Volkswagen implementation of MaCAN sends this message in the
following format:

CAN-ID(src-id)︸ ︷︷ ︸
CAN-ID

0 0 dst_id︸ ︷︷ ︸
Data 0

fwd_id︸ ︷︷ ︸
Data 1

4.5 Porting to STM32 platform

Porting of our implementation to the STM32 platform was necessary before its integra-
tion to Arctic Core. Initially, we planned to integrate MaCAN to Arctic Core running on
GNU/Linux, because our MaCAN implementation is already ported to GNU/Linux. After
exploration of Arctic Core source code it however turned out, that we won’t be able to run
it on GNU/Linux. Officially supported platforms are Power PC and ARM only and porting
to GNU/Linux is probably in a very early development stage. This was a problem since we
had no hardware to run Arctic Core on. Luckily, we managed to obtain STM3210C-EVAL
development board from STMicroelectronics, which is a complete development platform
for STMicroelectronic’s ARM Cortex-M3 core-based STM32F107VCT microcontroller. It
features RS-232 serial line, USB OTG, Two CAN 2.0A/B controllers, JTAG interface, 4 but-
tons, 4 LEDs and a 3.2" 320x240 TFT color LCD with touchscreen. This board is directly
supported in Arctic Studio, i.e. there are configuration templates for the driver modules
available, which respect the peripherals layout on the development board.

The development board is connected to the host computer through three distinct con-
nections, each serving a different purpose (see fig. 4.3).

USB CAN

USB to RS232

JTAG

JTAG

USB

Figure 4.3: Connection of the STM3210C-EVAL to the host computer

36 CHAPTER 4. MACAN IMPLEMENTATION

First of all, there is a JTAG emulator (with well known FTDI FT2232D IC). This device
is connected to a 20-pin JTAG connector on the development board and to the USB on
the computer. It allows binary executables to be downloaded to the target board using
OpenOCD and also debugging with the GDB. We had to write our own configration script
for OpenOCD, which can be found in the end of Appendix A.

CAN communication is directed through a CAN to USB converter. Once specific drivers
in the Linux kernel are enabled, a new CAN interface appears. This interface can be accessed
through standard PF_CAN socket interface. There is also available a set of tools in the
can-utils package, which allows to view and send CAN frames on the interface.

Finally, we used a standard serial line routed through RS232 to USB converter. This
link is used print normal and debugging messages on the serial console. The most common
serial consoles are minicom and ckermit.

Since our MaCAN implementation was not ported to the STM32 architecture, we have
decided to port it and run it on the STM3210C-EVAL development board alone, prior to
its integration to Arctic Core. Although most of the low level tasks like CAN controller
management etc. will be handled after the integration a by low level drivers in Arctic Core,
we wanted to make sure, that this board is able to run MaCAN and avoid future problems
during the integration process. Thanks to a good organization of the MaCAN source code
(platform dependent code separated from platform independent code), porting to a new
architecture was not so hard.

4.5.1 Directory organization

Platform dependent code is located in macan/src/XXX directory, where XXX is the name of
the platform. We have created a new subdirectory stm32 to hold the platform dependent
code. Additionally, we added a few needed libraries used in the implementation to the root
directory of the MaCAN project.

4.5.2 Used libraries

To make porting simpler, we have used STM32F10x Standard Peripherals Library from
STMicroelectronics (located in stm32/lib). This library allows easy access and configuration
of onboard peripherals and is also used in Arctic Core, altough some parts of the library are
modified there.

Cryptographic functions are part of the Nettle library, which is dynamically linked to
MaCAN applications on the GNU/Linux system. As dynamic linker is not available on the
STM32 platform, it was necessary to compile the library from the source code and link it
statically. The Nettle library also had to be stripped to the bare minimum so that the whole
binary would fit into limited flash memory of 256 kB on the microcontroller. The stripped
down version of the Nettle library is in the nettle directory.

4.5.3 Initialization

MaCAN initialization sequence is handled by a platform dependent function helper_init.
Its task is mainly to activate CAN communication subsystem and activate the Secure Hard-
ware Extension (in case of Tricore). In case of our development board, at least three tasks

4.5. PORTING TO STM32 PLATFORM 37

must be done — CAN controller initialization, timer initialization and serial port initializa-
tion.

CAN initialization involves enabling clocks for GPIO and CAN peripherals, configuring
output pins and setting up CAN baud rate to 125 kbps. This was done according to an
example from the STM32F10X Standard Peripherals library. There is no need to set up
interrupts, since we use polling3 to read received frames.

To be able to measure time, a timer must be running. We used timer TIM2 for this
purpose and set its prescaler to 300 and period to 2400. Because input clock for this timer
is running at 72 MHz, we get interrupt every 0.01 seconds. There is a global variable which
gets incremented in the interrupt routine and is used by time reading functions.

Serial line is needed to print messages on a serial console. We have used USART2 config-
ured to speed of 115200 b/s. We also had to implement our own fputc function (see Listing
4.7) to be able to print formatted messages via printf functions.

int fputc(char ch, void ∗f)
{
USART_SendData(EVAL_COM1, (uint8_t) ch);

/∗ Loop until the end of transmission ∗/
while (USART_GetFlagStatus(EVAL_COM1, USART_FLAG_TC) == RESET)
{}

/∗ if printing new line, add \r to print nicely on serial console ∗/
if (ch == ’\n’) {
fputc(’\r’ ,NULL);

}
return ch;

}

Listing 4.7: Custom fputc function

4.5.4 Trasmitting and receiving CAN frames

Transmitting of the CAN frames is done using function macan_send. It fills a library struc-
ture CanTxMsg with data from the CAN frame received as a parameter and sends it via
Can_Transmit function.

Receiving is done by periodically calling poll_can_fifo function, which tests if there is
a pending CAN frame. If so, it retrieves the data using CAN_Receive function and copies
them to a location given by a parameter.

4.5.5 Compiler and make rules

Compilation is done using GNU Tools for ARM Embedded Processors4. To compile MaCAN
with this toolchain, a new configuration for the OMK make system had to be created and

3Polling is preferred over interrupt based deliver in safety critical applications.
4Available at: https://launchpad.net/gcc-arm-embedded

38 CHAPTER 4. MACAN IMPLEMENTATION

some Makefile.omk files were modified. The config.target file for the STM32 platform is
the following:

CC=arm−none−eabi−gcc
AR=arm−none−eabi−ar

CFLAGS = −ggdb
CFLAGS += −std=c99
CFLAGS += −O0
CFLAGS += −Wall −Wextra −Warray−bounds −Wconversion
CFLAGS += −mthumb −mcpu=cortex−m3
CFLAGS += −ffunction−sections −fdata−sections
CFLAGS += −DUSE_STDPERIPH_DRIVER −DSTM32F10X_CL
CFLAGS += −DUSE_STM3210C_EVAL
CFLAGS += −D__CPU_STM32F107__
CFLAGS += −DMALLOC_HEAP_SIZE=0x4000

LDFLAGS = −T$(MAKERULES_DIR)/stm32/stm32_flash.ld −Wl,−Map=application.map −
Wl,−−gc−sections $(CFLAGS)

Listing 4.8: Part of the config.target file

The compiler is instructed use Thumb instructions for a target CPU Cortex-M3. The
function-sections and data-sections options are used to reduce the size of the pro-
duced executable by discarding unreachable sections. Further, several macros need to be
defined. USE_STDPERIPH_DRIVER, STM32F10X_CL and USE_STM3210C_EVAL are used by the
STM32F10X Standard Peripheral Library. __CPU_STM32F107__ is used in the MaCAN code
to control inclusion of header files. Finally macro MALLOC_HEAP_SIZE is used by _sbrk func-
tion needed by memory allocation functions.

4.5.6 Test using 1signal demo

To prove, that everything works as expected, we run the 1signal demo. Keyserver, timeserver
and one of the nodes were running on the computer with GNU/Linux, while the second node
was running on the development board. Later we also tried to swap the nodes to test both
receiving and sending of signals.

During early testing, we encountered a strange problem. The session key request from
the node running on the development board was successfully received by the keyserver, but
the node was unable to receive the session key. We later found out, that this was caused
by a loss of CAN frames. The CAN peripheral on the microcontroller has only 3 mailboxes,
so it can hold only 3 CAN frames at a time. If reading of these received CAN frames does
not happen quickly enough, some of these frames will be overwritten by other incoming
frames. Since session key is split into 6 CAN frames sent one after another, these CAN
frames must be read as fast as possible from the mailboxes. During runtime, the MaCAN
library outputs various info messages about received frames on the console. This was the
cause of the problem. Since we have decided to not use interrupts at all, reading of CAN
frames is done in software event loop. If some of the functions processing the CAN frame
prints a long string of text, it may take quite long to output all the characters on the serial

4.6. RESOURCE USAGE ANALYSIS 39

line. During this process, reading of CAN frames is not available and received frames waiting
in mailboxes are lost.

There are several solutions for this problem, but we decided to simply turn off the prob-
lematic messages. After this step, the communication worked as expected and MaCAN was
partly prepared to be integrated into Arc Core.

4.6 Resource usage analysis

In contrast to a standard CAN communication, the MaCAN protocol imposes additional
requirements on memory and CPU resources. In this section, we analyze the usage of these
resources in our implementation. This is especially important in automotive mass produc-
tion, where every cent counts. It is therefore useful to know what would be the price of the
increased security of on-board communication.

4.6.1 Memory usage

Memory requirements are based on size of the context structure macan_ctx, which contains a
configuration and runtime information representing the state of the MaCAN library. The size
of this structure is partly fixed and partly varies according to number of nodes and signals.
It may vary slightly on a different platforms. This is because the C standard only requires
size relations between the data types and minimum sizes for each data type. We have used
64 bit GNU/Linux platform for the memory analysis. Fixed memory requirements are listed
in Table 4.19. Memory requirements per node are listed in Table 4.20 and per signal in Table
4.21. Total memory usage Mreq can be expressed in terms of Nnode (number of nodes) and
Nsig (number of signals):

Mreq = 331 +Nnode ∗ 71 +Nsig ∗ 29

Data type Size Description
struct macan_config * 8 bytes Pointer to configuration structure
struct macan_config 68 bytes Configuration structure
struct com_part ** 8 bytes Pointer to communication partners vector
struct sig_handle ** 8 bytes Pointer to signal handles vector
struct macan_timekeeping 35 bytes Time keeping structure
uint8_t keywrap[32] 32 bytes Storage for wrapped session key
int sockfd 4 bytes CAN socket file descriptor
macan_ev_loop 8 bytes Pointer to event loop
macan_ev_can 48 bytes I/O watcher
macan_ev_timer 48 bytes Timer watcher
union 64 bytes Used by a timeserver and a keyserver

331 bytes TOTAL

Table 4.19: Fixed memory requirements

40 CHAPTER 4. MACAN IMPLEMENTATION

Data type Size Description
struct macan_ecu 12 bytes Node configuration
struct com_part 59 bytes Communication partner structure

71 bytes TOTAL

Table 4.20: Memory requirements per node

Data type Size Description
struct macan_sig_spec 7 bytes Signal configuration
struct sig_handle 22 bytes Signal handle structure

29 bytes TOTAL

Table 4.21: Memory requirements per signal

4.6.2 CPU usage

MaCAN communication is more computationally demanding than standard CAN communi-
cation due to to calculation and verification of the CMAC fields in the frames, which must
be performed while sending/receiving signed frames. We have measured times of the func-
tions that compute CMAC and unwrap the session key. The time was recorded before and
after each function’s call and the result was computed as a difference between these recorded
times. Every function was measured about 100 times, minimum and maximum values were
put in the tables. If the function macan_check_cmac fails to verify CMAC with a current
time, it will try again by decreasing/increasing one time unit from/to current time. That’s
why it occupies three rows in the table.

Task Time (Tricore) Time (STM32)
min max min max

macan_unwrap_key 77.43 µs 78.50 µs 1570 µs 1580 µs
macan_sign 4.82 µs 4.84 µs 130 µs 140 µs
macan_check_cmac (1 round) 12.42 µs 12.57 µs 130 µs 140 µs
macan_check_cmac (2 rounds) 16.96 µs 17.15 µs 250 µs 260 µs
macan_check_cmac (3 rounds) 21.58 µs 21.78 µs 380 µs 390 µs

Table 4.22: Times measured on TriCore TC1798 and on STM32F107VCT

Tests were done on the TriCore TC1798 board and also on the STM3210C-EVAL board
(results listed in Table 4.22). Times measured on the STM32 platform were way more slower
than on the TriCore TC1798 platform. The reason is that the TriCore TC1798 processor is
not only faster (300 MHz compared to 72 MHz), but mainly uses dedicated Secure Hardware
Extension for AES cryptographic routines.

Chapter 5

Integration into AUTOSAR
architecture

In this chapter we provide a more detailed look on the AUTOSAR architecture and its
communication stack, mainly the part dedicated to CAN communication. Then we discous
two possible ways of MaCAN integration into the AUTOSAR architecture followed by a brief
overview of ArcCore products. Finally we present implementation details of the integration
in Arctic Core and describe a demo used to test the implementation.

5.1 AUTOSAR architecture

AUTOSAR defines a layered software architecture illustrated in Fig. 5.1, which is divided
into Software Components (SWC) representing the application layer, Runtime Environment
(RTE) and Basic Software (BSW). Applications are created by connecting Software Com-
ponents together. RTE implements communication mechanism and provides access to Basic
Software modules (like an operating system, communication stack etc.) for Software Com-
ponents. We discus each layer in greater detail in subsequent sections.

5.1.1 Software components (SWC)

Software components represent a basic unit of application software in AUTOSAR architec-
ture and are completely independent of used hardware and infrastructure. Each component
encapsulates a part of functionality of the application and communicates with other compo-
nents via AUTOSAR interface using ports. Every port is associated with a port-interface,
which defines the contract that must be fulfilled by the port providing or requiring that inter-
face. Types of port-interfaces include Client-server (The server is provider of operations and
clients invoke them), Sender-receiver (The sender distributes information to one or several
receivers) and several other types of port-interfaces.

All communication between ports is handled by a Virtual Function Bus (VFB) — a
communication mechanism, that virtually connects ports of SWCs together and depending
on the configuration, these virtual connections between Software Components are mapped
locally or through a network communication like CAN or FlexRay. This allows for strict

41

42 CHAPTER 5. INTEGRATION INTO AUTOSAR ARCHITECTURE

Microcontroller

Application Layer

Runtime environment (RTE)

Basic software layer (BSW)

Software
Component

AUTOSAR
interface

Software
Component

AUTOSAR
interface

Software
Component

AUTOSAR
interface

Software
Component

AUTOSAR
interface

Figure 5.1: AUTOSAR top-level architecture overview

separation between the application and the infrastructure and adds a level of abstraction,
which allows relocation of Software Components to different ECUs without modification.
Figure 5.2 illustrates several Software Components communicating via VFB.

Figure 5.2: Software Components interconnected with the VFB[5]

5.1. AUTOSAR ARCHITECTURE 43

Software Components are typically further divided into runnables, which are small pieces
of code executed by RTE (periodically, or triggered by an event). Runnables implementation
can be created manually (involves traditional C coding) or from a model, from which the
code is generated automatically.

5.1.2 Runtime environment (RTE)

The RTE is a central part of the AUTOSAR ECU architecture. It provides a complete
environment for Software Components, shields them from lower layers in the Basic Software
and realizes the communication interfaces of the Virtual Function Bus. RTE code is au-
tomatically generated individually for each ECU. Runnables in Software Components are
scheduled by the RTE and use generated functions of the RTE to access data on ports or to
call operations of other Software Components.

5.1.3 Basic software (BSW)

The Basic software (BSW) is the lowest layer of the AUTOSAR software architecture and
contains modules that offer services to Software Components via the RTE. It is further
divided into several sublayers as described in [3] (see Fig. 5.3). Most of the Basic Software
modules provide only a C-like standardized interface, but some also provide AUTOSAR
interface (ports) which can be plugged into Software Components through VFB. Modules in
the Basic Software support following configuration classes [3]:

• Pre-compile time (*_Cfg.h, *_Cfg.c) – Static configuration used for enabling/dis-
abling optional functionality of the module (via #define).

• Link time (*_LCfg.h, *_LCfg.c) – Configuration of modules that are available only
as object code. Configuration data is accessed through external contants.

• Post-build time (*_PbC.h, *_PbCfg.c) – Used for configuration of data where only
the structure is defined, but the contents are not known during ECU-build time (e.g.
calibration data).

In following section we decribe each sublayer of the Basic Software.

5.1.3.1 Microcontroller abstraction layer (MCAL)

The Microcontroller abstraction layer is the lowest layer of the Basic Software. It contains
modules called device drivers, which have direct access to the microcontroller. The main
task of modules in this layer is to make higher software layers microcontroller independent.
An example might be two CAN drivers, which control a different CAN controllers, but pro-
vide the same standardized interface to higher layers (but their implementation is hardware
dependent).

44 CHAPTER 5. INTEGRATION INTO AUTOSAR ARCHITECTURE

Complex
Drivers

Microcontroller Drivers Memory Drivers I/O Drivers

I/O Hardware Abstraction

Memory Hardware
Abstraction

Memory ServicesSystem Services

Onboard Device
Abstraction

Communication Drivers

Communication
Hardware Abstraction

Communication Services

Services layer ECU abstraction layer Microcontroller abstraction layer

Basic software layer (BSW)

Figure 5.3: Basic Software (BSW) layer hierarchy

5.1.3.2 ECU abstraction layer

The ECU abstraction layer is located above the Microcontroller abstraction layer and offers
access to peripherals and devices regardless of their location (internal/external to the CPU)
and type of connection. Its task is to make higher layers independent of the ECU hardware
layout. An example might be the CAN interface module, which provides a generic API to
access CAN communications network, independent of the number of CAN controllers on the
ECU and their hardware realization.

5.1.3.3 Complex Device Drivers (CDD)

Complex Device Drivers is a special class of modules, which integrate a special purpose
functionality. This may include drivers or protocols, which are not standardized in AU-
TOSAR. As previously seen in Fig. 5.3, CDD modules span from RTE all the way down to
the microcontroller hardware and may be accessed by both Basic Software modules (via a
standardized interface) and Software Components (via AUTOSAR Interface).

5.1.3.4 Services layer

The Services layer is the highest layer of the Basic Software. Its task is to provide services for
Software Components and other modules in the Basic Software. Among other functionality
it offers an operating system, network communication and management services, diagnostic
services, ECU state management, mode management etc. It is mostly microcontroller and
ECU independent.

5.1.4 Methodology

AUTOSAR defines not only a layered software architecture, but also a software development
methodology. This methodology is divided into several phases (see Fig. 5.4). This simplifies
the development process and allows independent development of different parts of the system.
It also simplifies integration of Software Components from the OEM and Tier-1 suppliers.

5.1. AUTOSAR ARCHITECTURE 45

Figure 5.4: AUTOSAR Methodology overview1

Information between each development phase is exchanged using AUTOSAR XML files
and the steps are the following:

1. Vehicle functions are described in terms of Software Components, each described with
a SWC description.

2. Software Components are put together to form entire functional system, this is called
System description and it is created using a model-based development tool.

3. Parts of the system (individual Software Components) are distributed to ECUs.

4. For each ECU, an ECU extract is generated.

5. Basic software of each ECU is configured based on this extract and a BSW Module
Description.

6. Finally, code generators are used to generate configurations for Basic Software modules
and an ECU-specific RTE layer.

1Source: http://www.autosar.org/index.php?p=1&up=2&uup=4&uuup=0

46 CHAPTER 5. INTEGRATION INTO AUTOSAR ARCHITECTURE

5.2 AUTOSAR Communication stack

AUTOSAR Communication stack is a group of modules in the Basic Software, which pro-
vide communication services to other modules and Software Components. Modules of the
communication stack span from the RTE all the way down to the microcontroller hardware.
The uppermost communication services layer is common to any type of communication, but
modules in the lower ECU hardware abstraction layer and Microcontroller abstraction layer
are network protocol specific (different set of modules is used for CAN, FlexRay, Lin etc.).

As this thesis deals with integration of a CAN based protocol into AUTOSAR, we describe
modules related to CAN communication only. CAN communication stack is depicted in Fig.
5.5.

Figure 5.5: AUTOSAR CAN Communication stack [3]

Before proceeding, we explain concepts of signals and PDUs, which are used throughout
the description of the CAN communication stack.

5.2. AUTOSAR COMMUNICATION STACK 47

5.2.1 Signals

As described earlier, Software Components communicate using ports, which must have as-
signed a port-interface. If the port-interface is of Sender-receiver type, it contains several
data elements for data exchange. When two Software Components need to communicate and
run on the same ECU, RTE connects the ports locally without the need for a communication
stack. But when these components run on different ECUs, communication must be routed
through a network. In this case, data elements in the port interface must be mapped to
signals. RTE sends and receives signals from/to AUTOSAR COM module, which will be
described later.

5.2.2 Protocol Data Unit (PDU)

Protocol Data Unit (PDU) is used as a container for data exchange between modules in the
communication stack. Every PDU is composed from two parts. Service Data Unit (SDU)
contains data from the upper layer or application and Protocol Control Information, which
is used by lower (e.g. transport) layers2 (see Fig. 5.6).

Layer N-1

Layer N+1

Layer N

data structure PDU

data structure SDUPCI

LayerN_Tx(*PDU);

void LayerN_Tx(*SDU);

LayerN+1_Tx(*PDU);

void LayerN+1_Tx(*SDU);

data structure SDUPCI

data structurePCI PDU

Figure 5.6: PCI and SDU inside PDU [3]

PDUs are prefixed with letters depending on the layer and module in the communication
stack (see Fig. 5.7). I-PDUs (Interaction layer PDU) are used by the COM module to pack
one or more signals and further by the PDU router which is used to transport them to lower
layers. Every module, that handles I-PDUs and provides an API for I-PDUs must contain a
list of I-PDU IDs [10]. N-PDUs (Network layer PDU) are used by transport protocol modules
and L-PDUs (Data Link layer PDU) are used by lower interface and driver modules. The
maximum length of SDU in L-PDUs is protocol specific. For CAN, it is 8 bytes.

Every PDU has an ID represented by type PduIdType which may be up to 16 bits
long. Content of the PDU is defined by structure PduInfoType, which contains SduDataPtr
(pointer to payload data) and SduLength (length of SDU in bytes).

2For a simple CAN communication without the transport protocol layer, PCI is not needed.

48 CHAPTER 5. INTEGRATION INTO AUTOSAR ARCHITECTURE

ISO Layer Layer
Prefix

AUTOSAR
Modules

PDU Name CAN /
TTCAN
prefix

LIN prefix FlexRay
prefix

Layer 6:
Presentation
(Interaction)

I COM, DCM I-PDU N/A

I PDU router, PDU
multiplexer

I-PDU N/A

Layer 3:
Network Layer

N TP Layer N-PDU CAN SF
CAN FF
CAN CF
CAN FC

LIN SF
LIN FF
LIN CF
LIN FC

FR SF
FR FF
FR CF
FR FC

Layer 2:
Data Link Layer

L Driver, Interface L-PDU CAN LIN FR

Figure 5.7: PDU types [3]

5.2.3 Communication module (COM)

The COM module is located in the highest services layer of the AUTOSAR communica-
tion stack, directly under the RTE. It is responsible for provision of a signal oriented data
interface for the RTE, packing and unpacking signals to/from I-PDUs and communication
transmission control. Many different data types of signals (including both signed and un-
signed integers, floats and booleans) are supported. For integer types, endianess conversion
and sign extension might be performed. Signals can also be joined to signal groups (used for
complex data types) and filtered (for a complete list of features, see [8]).

Initialization is done by the ECU Manager module, which calls the Com_Init function
with a pointer to module’s configuration. During initialization, the COM module initializes
I-PDU buffers and sets signals to their initial values. There are scheduled functions, mainly
Com_MainFunctionRx and Com_MainFunctionTx which perform processing activities that are
not directly handled by functions for sending signals or functions invoked by lower layers
upon I-PDU reception. These functions must be called periodically [8].

When RTE executes a request to send a specific signal, it calls COM’s Com_SendSignal
function, where the signal value is written to the appropriate I-PDU buffer as defined in the
configuration. There are several transfer properties for signals available, which control if a
write access to the signal can trigger the transmission of the corresponding I-PDU. Properties
that trigger transmission of the I-PDU include TRIGGERED and TRIGGERED_ON_CHANGE, while
PENDING property never triggers the transmission. Whether the I-PDU will be actually trans-
mitted also depends on the transmission mode of the corresponding I-PDU. Available modes
include DIRECT, MIXED (triggered by an event) and PERIODIC (not triggered, but sent period-
ically). I-PDUs are sent to lower layers by calling PDU Router’s function PduR_ComTransmit
which in turn confirms the transmission by calling Com_TxConfirmation. When the trans-
mission of I-PDU fails, the COM module can retry the transmission request. The maximum
number of the repetitions can be set in the configuration.

Incoming I-PDUs from the PDU Router are announced to the COM module by calling
the Com_RxIndication function which unpacks signals from the I-PDU. In order to support
both interrupt driven and polled systems, it can be configured when the signal indication

5.2. AUTOSAR COMMUNICATION STACK 49

takes place. There are two configurable signal indication modes for each I-PDU – IMMEDIATE
and DEFFERED. When the signal indication mode is set to IMMEDIATE, the COM module
shall immediatelly call notification callbacks of the signal contained in the I-PDU (typi-
cally callback functions created during generation of RTE). The second mode, DEFFERED,
means that callback invocation will be made asynchronously during the next call of the
Com_MainFunctionRx [8].

5.2.4 PDU Router (PduR)

The PDU Router is a central part of the AUTOSAR communication stack and is located in
the services layer of the Basic Software. It must be present in every AUTOSAR ECU, where
communication is needed. Its main purpose is to route I-PDUs (Interaction layer Protocol
Data Units) between modules in both lower and upper layers. The set of modules the PDU
router can route to, is not fixed and can be specified in the module’s configuration. This
approach allows integration of Complex Device Driver modules as sources or destinations of
I-PDUs.

Routing of I-PDUs is described by static routing tables in the PDU Router configuration.
Routing path is uniquely determined by I-PDU ID lookup in the routing tables. I-PDUs can
be routed from a single source to a single destination (singlecast 1:1), from a single source
to multiple destinations (multicast 1:n) or PDU Router can act as a bi-directional gateway
between two communication interfaces. During routing, a different I-PDU ID (from a list
of the destination module) is assigned to the original I-PDU, so every module, that handles
I-PDUs, should maintain a list of accepted I-PDU IDs. Dynamic routing or any routing
decisions dependent on payload of the I-PDU are not supported [10].

In case of simple CAN communication (when I-PDUs are not longer than 8 bytes),
the PDU Router is used to route I-PDUs from the COM module to the CAN Interface
module. Transmit requests from the COM module are forwarded to the CAN Interface
module by calling its CanIf_Transmit function. The PDU Router must provide contents
of the I-PDU and PDU-ID of the L-PDU to be used for transmission. In the opposite
direction, CAN Interface module notifies PDU Router about an incoming PDUs by calling
its PduR_CanIfRxIndication function.

5.2.5 CAN Interface (CanIf)

The CAN Interface module is located in the intermediate layer of the communication stack
(see Fig. 5.5) and represents an interface to the services of the CAN Driver modules for the
upper communication layers. This interface consists of all high-level hardware independent
tasks needed in CAN communication (transmit request processing, transmit confirmation,
receive indication, error notification etc.). The CAN Interface module is also used for mode
management of the underlying CAN controllers and stores information about their current
status. State transitions are realized by upper modules, like CAN State Manager, or by ex-
ternal events. Initialization is done by the ECUManager module, which calls the CanIf_Init
function. The initialization process shall only take place, if all controllers are in stopped or
uninitialized state [6].

50 CHAPTER 5. INTEGRATION INTO AUTOSAR ARCHITECTURE

Upper layers call CanIf_Transmit function to request a transmission of L-PDUs on the
CAN network, without a direct interaction with the CAN Driver modules. When the function
is called, it identifies target CAN Driver module (only if multiple CAN Drivers are used),
determines Hardware Transmit Handle (an abstract reference to a CAN Mailbox) and calls
Can_Write function of the CAN Driver module. The transmission request is completed, when
the CanIf_Transmit function returns E_OK. However, when target CAN controller’s mailbox
is in use, the function will return E_NOT_OK and the upper layer must retry the transmission.
This can be avoided by buffering the L-PDU in the CAN Interface module, which then
takes care of the outstanding transmission of the L-PDU. The CAN Driver notifies the CAN
Interface module about successful transmission by calling its Can_TxConfirmation function,
which in turn notifies upper modules.

Upon reception of the CAN L-PDU, the CAN Driver module notifies the CAN Interface
module by calling its CanIf_RxIndication function. The CAN Driver also provides CAN ID
and DLC of the received frame to the CAN Interface, so the function may perform software
filtering and compare DLC value of the CAN frame with value specified in the configuration.
Appropriate upper layer (specified in the configuration) is then notified by calling its receive
indication function.

5.2.6 CAN Driver module (CanDrv)

The CAN Driver module is part of the lowest microcontroller abstraction layer in the Basic
Software. It has direct access to the hardware and offers a hardware independent API to the
CAN Interface module, which is the only module in the upper layer, which communicates
with it. The CAN Driver module can control several CAN controllers which may be located
on-chip or as an external device, but they must belong to the same CAN Hardware Unit3.
If this is not the case, several CAN Driver modules shall be implemented. As a consequence
of a direct hardware access, this module is hardware dependent.

The main task of the CAN Driver module is to provide services for transmitting L-
PDUs and notify the upper CAN Interface module upon reception of L-PDUs by calling its
callback functions. Furthermore it offers services to control the behavior and state of the
CAN controllers. If the CAN controller is on-chip, the CAN Driver module does not use
services of other modules. The only exception is the digital I/O configuration, which is done
by the Port module. If the CAN controller is off-chip, the CAN Driver module may use
services of other MCAL drivers, like the SPI driver.

CAN Driver modules support two modes of operation — polling and interrupt. Polling
mode is maintained by Can_MainFunction_xxx functions which must be called periodically.
If the interrupt mode of operation is selected, the CAN Driver module must implement
interrupt service routines of the CAN hardware interrupts.

CAN Driver module is initialized by the ECU Manager during the startup phase. It
calls function Can_Init with a pointer to configuration. This function then initializes the
CAN controller. When the CAN Driver module receives an L-PDU, it notifies the CAN
Interface layer by calling its receive indication callback with ID, DLC and pointer to L-SDU
as parameters. During transmission, CAN Driver module converts L-PDU contents, ID and

3CAN Hardware Unit consists of one or multiple CAN controllers of the same type, each controller serves
exactly one physical channel

5.3. ARCCORE AND THEIR PRODUCTS 51

DLC to a hardware specific format, if necessary. A CAN controller has four basic states
defined at the software level:

• UNINIT – CAN controller is not initialized and is not participating on the CAN bus.

• STOPPED – CAN controller is initialized, but is not participating on the CAN bus.

• STARTED – CAN controller is in normal operation and participates on the CAN bus.

• SLEEP – Same as STOPPED, but CAN controller can be woken up over the CAN bus.

For each CAN controller a corresponding software state machine is implemented inside the
CAN Interface module, which manages the state of the CAN controller by calling functions
of the CAN Driver module. These functions only encapsulate CAN hardware access and
the CAN Driver module neither memorizes the state changes nor checks for validity of the
state changes. States can also be changed by an external events like Bus-off event and HW
wakeup event. When the CAN Driver module recognizes these external events (by polling
or interrupt) it does not change the state by itself, but rathers notifies the CAN Interface
module which changes the state inside the callback function.

5.3 ArcCore and their products

ArcCore, founded in 2009 and based in Sweden, is a provider of products and services for
embedded systems, including AUTOSAR solutions for automotive market. There are also
several other vendors of AUTOSAR solutions, like Vektor Informatik, Elektrobit, Freescale
or ETAS. Products offered by these companies range from sole implementations of Basic
Software layer to complete environments including generators, configurators and system
tools, but all these products are licensed under commercial licenses. In contrast, people in
ArcCore are strongly focused on open standards, like AUTOSAR and dislike proprietary
solutions. That is why they offer an open source licensing model, apart from standard
commercial licenses. Being open source means more users can use their products and also
bring better understanding of what is needed to progress forward. Products available under
the open source license include Arctic Core and Arctic Studio (but excluding AUTOSAR
specific tools).

5.3.1 Arctic Core

Arctic Core is an implementation of the AUTOSAR embedded platform (compliant with
AUTOSAR 4.1.1) and includes a full set of features required in an automotive Electronic
Control Unit. Standard package among others includes AUTOSAR OS (extended OSEK
OS), ECU state manager, communication services (CAN, LIN, ETH and COM), diagnostic
services and memory management services. It is distributed in form of source code, includ-
ing build scripts and several example projects for Arctic Studio (including demonstrations of
LIN and CAN communication and examples about how to use the RTE and the real-time op-
erating system). Currently supported microcontroller architectures are Power PC (Freescale
MPC microcontollers) and ARM (STMicroelectronics STM32F103 and STM32F107 series).

52 CHAPTER 5. INTEGRATION INTO AUTOSAR ARCHITECTURE

5.3.2 Arctic Studio

Arctic Studio (see Fig. 5.8) is a complete embedded software development environment for
automotive embedded software based on the AUTOSAR standard. It is based on Eclipse IDE
and provides tools for different types of tasks: application development, embedded platform
development and system integration. Build system supports GNU Make, GCC (ARM) and
CodeWarrior (Power PC). Currently the only supported host operating system is Microsoft
Windows (Linux version is under development).

Figure 5.8: Arctic Studio IDE

Arctic Studio allows developers to create Software Components in the text editor and
to define data types, ports, signal mappings and behaviour using ARText4 language. These
definitions, stored in several SWCD files, are then transformed (according to composition of
Software components) to an arxml file known as Ecu Extract. An integrated tool called RTE
Editor is used to configure the RTE (map runnables and tasks to Software Components etc.)
and for actual RTE code generation. Arctic Studio also provides full set of configuration tools
for configuring AUTOSAR Basic Software. These tools are able to validate and generate
configurations for Basic Software modules according to the AUTOSAR standard and are
distributed under a commercial license.

5.4 Integration of MaCAN into AUTOSAR

After getting familiar with the AUTOSAR architecture and reading the specification, it was
obvious, that MaCAN cannot exist in the AUTOSAR implementation “as is”, but must be

4https://www.artop.org/artext/

5.4. INTEGRATION OF MACAN INTO AUTOSAR 53

modified to be able to communicate with other subsystems of AUTOSAR. We have stated
a set of goals, that the chosen way of integration should meet:

• Easy to implement – as stated in the KISS (Keep It Simple, Stupid) principle, most
systems work best if they are kept simple rather than made complicated. Therefore
simplicity should be a key goal in design and unnecessary complexity should be avoided.

• Lowest possible impact on implementation of existing AUTOSAR modules
and components — this will increase the possibility to use MaCAN with modules
from different AUTOSAR vendors.

• Modify the original MaCAN code as little as possible — MaCAN still exists
and is maintained as a standalone implementation. This goal is a must for keeping its
maintenance and future development on a manageable level.

It turned out there are basicaly two very distinct ways how to integrate MaCAN into
AUTOSAR, which more or less conform with the goals stated. One possibility is to encap-
sulate MaCAN into a Software Component and the other one is to integrate it into Basic
Software as a module. We have considered both options and tried to find their advantages
and disadvantages.

5.4.1 MaCAN as a Software Component

First, we have considered integration of MaCAN into AUTOSAR as a Software Component,
that would offer services via a Client-Server port interface to other components. This idea
is based on the fact that lower layers of the communication stack are safety-related, so
every additional piece of code must be developed according to strict rules and certified by
an independent auditor. If we were able to integrate MaCAN into a Software Component,
its deployment in real system would be much easier at least from a safety point of view.
However, since MaCAN is designed to have full access to the CAN interface, this would
imply considerable overhead and extensive modifications to existing modules in the Basic
Software. Therefore, we have decided to abandon the idea of integrating MaCAN as a
Software Component.

5.4.2 MaCAN as a module in the Basic Software

At first glance, it seemed that integrating MaCAN as a module into the Basic Software layer
will have greater impact on existing modules than the approach described in the previous
section. This was supported by the fact, that MaCAN module would need to communi-
cate with other modules standardized in the Basic Software so some modifications of the
existing modules would be necessary. In AUTOSAR, there is however a class of Basic Soft-
ware modules called Complex Device Drivers (CDD), which allows to add a non-standard
functionality.

CDD were introduced in section 5.1.3.3 as modules for complex sensor evaluation and
actuator control. But in addition, CDD might also be used to implement enhanced ser-
vices/protocols or encapsulate legacy functionality of a non-AUTOSAR system [7]. As CDD

54 CHAPTER 5. INTEGRATION INTO AUTOSAR ARCHITECTURE

span all layers of the Basic Software, they have access to both high level services and low
level drivers. Additionally, other modules in the Basic software, including those in the com-
munication stack (COM module, PDU Router and bus interface modules) can be configured
to interface CDD. These are good preconditions for integrating MaCAN as a CDD mod-
ule into the CAN communication stack. MaCAN functionality integrated into the CAN
communication stack is illustrated in Fig. 5.9.

RTE

Signals

AUTOSAR
COM

PDU Router
I-PDU

CAN
INTERFACE

CDD_MACAN

I-PDU
I-PDU

CAN DRIVER

L-PDU

I-PDU

Figure 5.9: Simplified CAN communication stack with CDD_Macan module

Proposed CDD module is in the form of a wrapper module, that encapsulates the MaCAN
implementation and is used to call its functions. It is placed in the ECU abstraction layer
between the PDU Router and the CAN Interface module.

Incoming signals packed in I-PDUs from the PDU Router are transformed to CAN frames
according to a simple translation table (this step is necessary since MaCAN implementation
works with CAN frames and not with I-PDUs). These CAN frames are then handed over
to MaCAN which appends a signature. CAN frames are then again transformed to I-PDUs
and forwarded to the CAN Interface module to be transmitted. The CAN Interface is made
aware of I-PDUs that belong to the MaCAN module so it knows where to forward incoming
I-PDUs.

This approach also meets the goals stated above:

• It is simple, because it wraps the MaCAN implementation. In general, the module will
only do several translations between data formats and pass the data to the MaCAN
implementation.

5.5. IMPLEMENTATION OF CDD_MACAN IN ARCTIC CORE 55

• The CAN Interface and the PDU Router can interface CDD modules and will possibly
require only minor modifications. No modifications to the application software is nec-
essary. Existing signals can be easily secured by configuring the PDU Router to route
them through the CDD_MaCAN module.

• The MaCAN implementation will require only a little modification, in fact only target
specific functions will have to be modified.

We have finally decided to integrate MaCAN into AUTOSAR as a Basic Software module.

5.5 Implementation of CDD_Macan in Arctic Core

In this section, we cover details about implementation of the CDD_Macan module described
earlier. We also describe configuration options and details about compilation together with
Arctic Core.

5.5.1 File structure

Functionality of the CDD_Macan module is contained within a single CDD_Macan.c file lo-
cated in the core/communication/CDD_Macan directory. Functions in this file have CDD_Macan
prefix to be clearly distinguished from functions that belong to the MaCAN implementation
and have macan prefix. Header file hiearchy is illustrated in Fig. 5.10.

CDD_Macan.c

CDD_Macan.h

CDD_Macan_ConfigTypes.h
CDD_Macan_PbCfg.h

PduR_CDD_Macan.h

Os.h

Dio.h

<<include>>

<<include>>

<<include>>

<<include>>

<<include>><<include>>

macan_private.h

<<include>>

Figure 5.10: Header file hiearchy

5.5.2 Initialization

The module is initialized by the ECU Manager during second phase of the startup procedure
(when the operating system is already running), which calls the CDD_Macan_Init function
with a pointer to the configuration structure.To allow this, it is necessary to add an entry to
the PostBuildconfigType structure type, which stores pointer to post-build configurations:

56 CHAPTER 5. INTEGRATION INTO AUTOSAR ARCHITECTURE

#if defined(USE_CDD_MACAN)
const CDD_Macan_ConfigType* const CDD_Macan_ConfigPtr;

#endif

assign this pointer in CDD_Macan’s configuration into Postbuild_config structure located
in EcuM_PBHeader.c:

#if defined (USE_CDD_MACAN)
.CDD_Macan_ConfigPtr = &CDD_Macan_Config,

#endif

Finally, we had to modify the EcuM_Callout_Stubs.c file by adding following lines inside
the EcuM_AL_DriverInitTwo function (used to initialize Basic Software modules):

#if defined(USE_CDD_MACAN)
// Initialize Macan module
NO_DRIVER(CDD_Macan_Init(ConfigPtr->PostBuildConfig->CDD_Macan_ConfigPtr));

#endif

The initialization function is used to initialize our MaCAN implementation, by calling
its macan_init function and to register callback functions for every signal defined in the
configuration of the MaCAN implementation.

5.5.3 Establishing a secure communication channel

Before any signed signals can be sent or received, the CDD_Macan module must establish
a secure communication channel with all communication partners. This involves sending
a session key request, an ACK message and a signal request message. In the standalone
MaCAN implementation, there is an event loop, which is used to periodically call so called
“housekeeping” function, which checks validity of the session keys and requests a new ses-
sion key when necessary. This event loop is not needed in AUTOSAR, since there is a
real-time operating system. We have wrapped a call of the housekeeping function to the
CDD_Macan_MainFunction_Hk function, which is called about every 500 ms by a periodic
task or Basic Software Scheduler.

5.5.4 Transmission of a signed signal

Signal transmission starts at the application layer, when a Software Component wants to
update a value of a data element in its port. The request is directed through RTE to
the COM module, which wraps the signal to an I-PDU. Signals that should be signed
are packed to I-PDUs and must be at most 4 bytes long. I-PDUs with signals are sent
to the PDU Router, which routes them to the CDD_Macan module. To add this rout-
ing capability to the PDU Router, we had to add the ARC_PDUR_CDD_MACAN entry to the
ARC_PduR_ModuleType enumeration. This value is used in the PDU Router configuration to
specify destination of the I-PDU. We also had to add following lines in a switch statement
in the PduR_ARC_RouteTransmit function (used to send I-PDU to the destination module):

5.5. IMPLEMENTATION OF CDD_MACAN IN ARCTIC CORE 57

case ARC_PDUR_CDD_MACAN:
#if PDUR_CDD_MACAN_SUPPORT == STD_ON

retVal = CDD_Macan_Transmit(destination->DestPduId, pduInfo);
#endif

break;

If the destination path of the I-PDU is configured to ARC_PDUR_CDD_MACAN, the I-PDU is
passed to the CDD_Macan by calling its CDD_Macan_Transmit function. The PDU Router
changes the PDU-ID to a value specified in its configuration and defined in the destination
module’s config header file, so the destination module can recognize the I-PDU. When the
CDD_Macan_Transmit function receives an I-PDU for transmission, it must convert the I-
PDU ID to the signal ID internal to the MaCAN implementation (by reading an entry inside
the translation table in the CDD_Macan configuration) and to copy the signal value from
the I-PDU. The signal ID and its value is then passed to the macan_send_sig function.
The MaCAN implementation then creates a CAN frame (fills up the can_frame structure)
with the signal and appends a signature. This CAN frame is normally transmitted to the
CAN network by the platform dependent macan_send function. In AUTOSAR, however, the
CAN frame needs to be transformed back to the PDU so it can pass through the rest of the
communication stack. Therefore the CAN frame is sent to the CDD_Macan_SendCanFrame
function, which searches a translation table in the configuration (see Listing 5.1) and creates
a PDU with PDU-ID defined in the configuration of the CAN Interface. The PDU is then
passed to the CanIf_Transmit function. This translation mechanism is used also to create
PDUs from CAN frames originating in the MaCAN implementation, like session key requests,
ACK messages etc. The CAN Interface must know all these PDUs and their PDU-IDs must
be defined in its configuration.

The function CDD_TxCanIdToPduId could perform better using the binary search algo-
rithm on a traslation table sorted by CAN-IDs. This would however also require modifica-
tions of the configuration tool described in section 5.5.7. As this implementation is the first
prototype, its optimization was not primary goal and is planned in the future.

Std_ReturnType CDD_Macan_TxCanIdToPduId(uint32 canId, uint32 dlc, PduIdType ∗pduId) {
int i ;
for(i = 0; i < CDD_Macan_ConfigPtr−>NumberOfTxPduIds; i++) {

if (CDD_Macan_ConfigPtr−>TxPduConfigPtr[i].CanId == canId &&
CDD_Macan_ConfigPtr−>TxPduConfigPtr[i].Dlc == dlc) {
∗pduId = CDD_Macan_ConfigPtr−>TxPduConfigPtr[i].PduId;
return E_OK;

}
}
return E_NOT_OK;

}

Listing 5.1: Function that translates CAN-ID to PDU-ID

58 CHAPTER 5. INTEGRATION INTO AUTOSAR ARCHITECTURE

5.5.5 Reception of a signed signal

When a CAN frame with a signed signal is received, it is first processed by the CAN
Driver module, which notifies the CAN Interface module by passing an L-PDU to its
CanIf_RxIndication function. Each CAN L-PDU must be specified in the CAN Inter-
face configuration together with CAN-ID, DLC and a module from the upper layer which
will be notified about reception of this L-PDU. The CAN Interface can be configured to
notify a CDD module by calling its (arbitrary) receive indication function. PDUs containing
signed signals and other MaCAN related data must be routed to the CDD_Macan module. The
receive indication function CDD_Macan_RxIndication is used to translate received PDUs to
CAN frames according to a translation table in the configuration and store them in a software
queue (FIFO). This is necessary, because the receive indication function is called from the
context of an interrupt service routine (polling access is not supported by Arctic Core CAN
Driver) and direct processing of the received CAN frames can cause loss of CAN messages,
due to reasons described in section 4.5.6. CAN frames in the FIFO are read by a scheduled
function CDD_Macan_MainFunction, which should be called fast enough (once every 10 ms)
to minimize the delay before received frames are processed. This function passes the CAN
frames to the macan_process_frame function.

If the MaCAN implementation successfully verifies signal signature, it calls the callback
function CDD_Macan_SigCallback assigned to all signals during initialization, which is used
to create I-PDU from the internal signal ID and fill it with the signal value. This I-PDU
is then passed to the PDU Router, which has a dedicated receive indication function for
each lower layer module. Therefore we had to create a receive indication function for the
CDD_Macan module, which is very similar to the receive indication function called by the
CAN Interface module:

void PduR_CDD_MacanRxIndication(PduIdType pduId, PduInfoType* pduInfoPtr) {
PduR_LoIfRxIndication(pduId, pduInfoPtr, 0x01);

}

The function is only used to call a common receive indication function with different
parameters. Received I-PDUs with signals are then routed to the COM module. During
routing, I-PDU ID is changed to a value defined in the COM configuration header file.

When signal verification fails, MaCAN implementation calls the invalid signal callback
CDD_Macan_SigInvalidCmacCallback (also assigned during initialization) which is used to
monitor frequency of invalid signals. If it reaches a certain threshold value, the function calls
a callback defined in the configuration (see section 5.5.7 for more details).

5.5.6 Time measurement

MaCAN implementation needs a monotonically increasing clock to keep information about
current time, which is returned by the read_time function. In AUTOSAR, the easiest
solution is to use a counter increased by the Operating System. This counter value is
multiplied by constant CDD_MACAN_TIME_MULTIPLIER specified in the configuration, to get
correct time readings in microseconds.

5.5. IMPLEMENTATION OF CDD_MACAN IN ARCTIC CORE 59

5.5.7 Configuration

Configuration of the CDD_Macan module is divided into several containers, that are defined
in the CDD_Macan_ConfigTypes.h file. There is a top level container structure CDD_Macan_ConfigType
which holds main configuration parameters and other configuration containers with members
listed in Table 5.1. Specification of PDUs is held in the CDD_Macan_PduConfigType structure
with members listed in Table 5.2.

The actual configuration of the CDD_Macan module in the ECU configuration project is
stored in config/CDD_Macan subdirectory. Inside this directory, there is the CDD_Macan_PbCfg.c
file holding the configuration structures and the CDD_Macan_PbCfg.h file with PDU-IDs.

Name: MacanConfig
Data type: struct macan_config *
Description: Pointer to configuration of the MaCAN implementation. It is passed to
the macan_init function during initialization of the module. Files holding the configu-
ration macan_config.c and macan_config.h should be placed in the config/CDD_Macan
directory.

Name: RxPduConfigPtr
Data type: const CDD_Macan_PduConfigType *
Description: Pointer to an array holding the specification of PDUs received from the CAN
Interface. PDU-IDs are specified in the CanIf_PbCfg.h file and are numbered gradually up
from zero. This allows using PDU-ID directly as index in the array, provided it is sorted
ascending by PDU-ID.

Name: TxPduConfigPtr
Data type: const CDD_Macan_PduConfigType *
Description: Pointer to an array holding the specification of PDUs transmitted to the
CAN Interface. PDU-IDs are specified in the CanIf_PbCfg.h file. When performing a
CAN-ID to PDU-ID translation, CAN-ID cannot be used as index, so the array must be
searched.

Name: NumberOfRxPduIds
Data type: uint32
Description: Size of the array holding the specification of PDUs received from the CAN
Interface. Used for boundary check.

Name: NumberOfTxPduIds
Data type: uint32
Description: Size of the array holding the specification of PDUs transmitted to the CAN
Interface. Used for boundary check.

Name: PduIdToInternalSignalIdMap
Data type: const uint32 *

60 CHAPTER 5. INTEGRATION INTO AUTOSAR ARCHITECTURE

Description: Pointer to an array representing a PDU-ID to Internal MaCAN signal
ID translation table. It is used in the CDD_Macan_Transmit function to recognize sig-
nals coming packed in I-PDUs from the PDU router. PDU-IDs are defined in the
CDD_Macan_PbCfg.h file and are numbered gradually up from zero. This allows using
PDU-ID directly as index of the searched internal signal ID.

Name: InternalSignalIdToPduIdMap
Data type: const uint32 *
Description: Pointer to an array representing an Internal MaCAN signal ID to PDU-
ID translation table. It is used in the CDD_Macan_SigCallback function to pack received
signals to I-PDUs before sending them to the PDU Router. Internal signal IDs are defined
in the macan_config.h file and must be numbered gradually up from zero. This allows
using the Internal signal ID directly as an index to the array.

Name: maxNumberOfInvalidCMAC
Data type: uint32
Description: Maximum number of invalid CMACs within invalidCMACPeriod.

Name: invalidCMACPeriod
Data type: uint32
Description: How long to count invalid CMACs before resetting the counter (in µs).

Name: invalidCMACCallback
Data type: const void *(void)
Description: Pointer to a callback function, which is called once the
maxNumberOfInvalidCMAC has been exceeded within the invalidCMACPeriod.

Table 5.1: Members of the CDD_Macan_ConfigType structure

Name: PduId
Data type: PduIdType
Description: PDU-ID of the PDU being send to/received from a lower layer.

Name: canId
Data type: uint32
Description: CAN-ID of the CAN frame associated with this PDU.

Name: Dlc
Data type: const void *(void)
Description: Data Length Code of the CAN frame associated with this PDU. This is
needed because for two frames with the same CAN-ID but different DLC we need two
different PDU-IDs

Table 5.2: Members of the CDD_Macan_PduConfigType structure

5.5. IMPLEMENTATION OF CDD_MACAN IN ARCTIC CORE 61

5.5.8 Compilation with Arctic Core

Arctic Core code is compiled inside ECU configuration projects using makefiles generated
during creation of the project. Each project has one or more target boards specified and each
board has a set of Basic Software modules available. In the project’s config subdirectory,
there is a set of *.mk files, which specify modules to be used with the project (one file
per module). Source codes of modules are then conditionally compiled by the rules in the
board_common.mk file located in core/boards.

We have created a new directory CDD_Macan in core/communication. Its purpose is to
hold sources of our MaCAN implementation and also sources of the CDD_Macan module.
The sources of our MaCAN implementation are located in the macan subdirectory. More pre-
cisely, this subdirectory is a GIT submodule. To compile our MaCAN implementation with
Arctic Core, we had to add CDD_MACAN to available modules for the STM3210C-EVAL board
by adding following contents to the board_config.mk file in core/boards/stm32_stm3210c:

Macan CDD module
MOD_AVAIL += CDD_MACAN

To add CDD_Macan module to a project, the line MOD_USE += CDD_MACAN must be put
into a newly created CDD_Macan.mk file in the project’s config directory. Finally we had to
add following lines to core/boards/board_common.mk file:

obj-$(USE_CDD_MACAN) += CDD_Macan.o
obj-$(USE_CDD_MACAN) += CDD_Macan_PBCfg.o
obj-$(USE_CDD_MACAN) += macan_config.o
vpath-$(USE_CDD_MACAN) += $(ROOTDIR)/communication/CDD_Macan
inc-$(USE_CDD_MACAN) += $(ROOTDIR)/communication/CDD_Macan

MaCAN C files
vpath-$(USE_CDD_MACAN) += $(ROOTDIR)/communication/ \

CDD_Macan/macan/macan/src/target/stm32
vpath-$(USE_CDD_MACAN) += $(ROOTDIR)/communication/CDD_Macan/macan/macan/src

MACAN_C_FILES += stm32_cryptlib.c
MACAN_C_FILES += common.c
MACAN_C_FILES += cryptlib.c
MACAN_C_FILES += debug.c
MACAN_C_FILES += macan.c
MACAN_C_FILES += stm32_autosar.c

Nettle C files
VPATH += $(ROOTDIR)/communication/ \

CDD_Macan/macan/macan/src/target/stm32/nettle
MACAN_C_FILES += aes-decrypt.c
MACAN_C_FILES += aes-decrypt-internal.c
MACAN_C_FILES += aes-encrypt.c

62 CHAPTER 5. INTEGRATION INTO AUTOSAR ARCHITECTURE

MACAN_C_FILES += aes-encrypt-internal.c
MACAN_C_FILES += aes-encrypt-table.c
MACAN_C_FILES += aes-invert-internal.c
MACAN_C_FILES += aes-set-decrypt-key.c
MACAN_C_FILES += aes-set-encrypt-key.c
MACAN_C_FILES += aes-set-key-internal.c
MACAN_C_FILES += memxor.c

obj-$(USE_CDD_MACAN) += $(MACAN_C_FILES:%.c=%.o)
inc-$(USE_CDD_MACAN) += $(ROOTDIR)/communication/CDD_Macan/macan/macan/include
inc-$(USE_CDD_MACAN) += $(ROOTDIR)/communication/CDD_Macan/macan/macan/include
inc-$(USE_CDD_MACAN) += $(ROOTDIR)/communication/CDD_Macan/macan/macan/src/ \

target/stm32
inc-$(USE_CDD_MACAN) += $(ROOTDIR)/communication/CDD_Macan/macan/macan/src/ \

target/stm32/nettle

CFLAGS += -D__CPU_STM32F107__
CFLAGS += -DUSED_IN_AUTOSAR

In the beginning we include files of the CDD_Macan module. Then we have set paths,
where Make should look for the C files followed by a list of files belonging to MaCAN and
Nettle library. Finally, we have specified compiler flags and a list of locations, where Make
should look for include files. We have introduced a new macro USED_IN_AUTOSAR which is
used to disable the event loop, as described in section 5.5.3.

5.5.8.1 Configuration tool

Configuration of the modules in Basic Software is typically done by a GUI tool called BSW
Editor, which validates the configuration and generates configuration files inside project’s
config directory. Since we had not access to source codes of Arctic Studio, we were not able
to use the BSW Editor for configuration of the CDD_Macan module. As a substitution,
we have created a command line configuration tool which generates all configuration files
needed. It is written in BASH and uses common command line utilities, which can be found
on most GNU/Linux systems. The script performs following actions:

• Creates a CDD_Macan.mk file, which enables the CDD_Macan module.

• Generates CDD_Macan_PbCfg.h and CDD_Macan_PbCfg.c files by reading configuration
of the MaCAN implementation and configuration of the CAN Interface.

• Modifies configuration files of the PDU Router. Mainly it enables CDD_Macan sup-
port in the PDU Router and corrects destination and source modules in routing paths.
This is necessary, since the BSW Editor is not aware of changes we have made in PDU
Router.

Note that it is necessary to specify node_id in the macan_config.c file so the tool
knows which signals belong to this node. It is also required, that the PDU-IDs of L-
PDUs in the CAN Interface configuration have prefix SPECIAL_PDU_ID_MACANRXPDU and

5.6. DEMO APPLICATION 63

SPECIAL_PDU_ID_MACANTXPDU. This can be achieved by using a virtual EcuC module to
store PDU names with “MacanRXPdu” or “MacanTxPdu” prefix followed by name of a node
or name of a signal (see Appendix A for an example demo configuration).

To generate configuration of the CDD_Macan module, the following steps must be per-
formed:

1. Generate a complete ECU configuration for other modules.

2. Copy the configuration tool script CDD_Macan_generate_config.sh from
the core/communication/CDD_Macan/ directory to project’s root directory.

3. Create or copy configuration of the MaCAN implementation into CDD_Macan located
in project’s config directory.

4. Invoke the script without any parameters from project’s root directory.

The scrips outputs information about what it currently does and which nodes and signals it
found in the configuration of the MaCAN implementation:

INFO: Exploring MaCAN config...
--> Our node_id is NODE1
--> Our CAN id is 0x102
Other participants are:
--> KEY_SERVER
--> TIME_SERVER
--> NODE2
Signals found:
--> TX signal SIGNAL_A
--> RX signal SIGNAL_B
INFO: Creating file ./config/CDD_Macan.mk
INFO: Creating file ./config/CDD_Macan/CDD_Macan_PbCfg.h
INFO: Creating file ./config/CDD_Macan/CDD_Macan_PbCfg.c
INFO: Enabling CDD_Macan support in PduR
INFO: Modifying PduR config
DONE!

5.6 Demo application

We have created a demo based on 1signal demo described in section 4.3.2 to test functionality
of the CDD_Macan module. The NODE1, formerly implemented on GNU/Linux, is now
replaced with an AUTOSAR implementation running on the STM3210C-EVAL board, while
NODE2, KS and TS still run on GNU/Linux. Nodes participating in the communication are
listed in Table 5.3, signals are listed in Table 5.4 and layout of the CAN network is illustrated
in Fig. 5.11. For a more detailed guide on how to setup this demo in Arctic Studio, see
Appendix A.

64 CHAPTER 5. INTEGRATION INTO AUTOSAR ARCHITECTURE

The AUTOSAR node sends signed SIGNAL_A to NODE2 according to state of a button on
the board – when the button is pressed, the signal has value 1, when released, the signal has
value 0. When signed SIGNAL_B from NODE2 with value grater than zero is received, a blue
LED on the board is switched on. The LED is switched off when the signal value equals to
zero.

Node name Platform Crypt frame CAN-ID ECU-ID
KS GNU/Linux 0x100 0x0
TS GNU/Linux 0x101 0x1
NODE1 AUTOSAR 0x102 0x2
NODE2 GNU/Linux 0x103 0x3

Table 5.3: Nodes in the demo

Signal ID Source Destination Secure CAN-ID
SIGNAL_A 0 NODE1 NODE2 0x201
SIGNAL_B 1 NODE2 NODE1 0x202

Table 5.4: Signals in the demo

KS TS

NODE1 (AUTOSAR NODE)

NODE2

can0

TheProducer TheConsumer

RTE

Signals

BASIC SOFTWARE

Sender port Receiver port

Figure 5.11: Nodes in the demo

5.6. DEMO APPLICATION 65

5.6.1 Application model

Application model of the demo is created inside an ArcCore AUTOSAR project and consists
of two Software Components – TheProducer and TheConsumer. Both communicate through
a port of a MySRInterface type. This sender-receiver port-interface is very simple and con-
tains only one data element (see Listing 5.2). Both TheProducer and TheConsumer contain
runnables, which will be implemented later in the ECU Configuration project.

interface senderReceiver MySRInterface {
data uint32 MyElement

}

Listing 5.2: MySRInteraface port-interface

TheProducer provides MySRInterface and contains one runnable, which is executed pe-
riodically and has a write access to the MyElement data element in its port. The ARText
description of TheProducer is given in Listing 5.3.

component application MyProducer {
ports {

sender MySenderPort provides MySRInterface
}

}
internalBehavior MyProducerBehvior for MyProducer {
runnable MyProducerRunnable [1.0] {

timingEvent 1.0
dataWriteAccess MySenderPort.∗

}
}
implementation MyProducerImplementation for MyProducerBehvior {
language c
codeDescriptor "src"

}

Listing 5.3: Description of TheProducer component

TheConsumer requires MySRInterface and contains one runnable, which is executed upon
an event that is raised when data element in the port changes. The ARText description of
TheConsumer is given in Listing 5.4.

component application MyConsumer {
ports {

receiver MyReceiverPort requires MySRInterface
}

}
internalBehavior MyConsumerBehavior for MyConsumer {
runnable MyConsumerRunnable [1.0] {
dataReadAccess MyReceiverPort.∗
dataReceivedEvent MyReceiverPort.MyElement as DataReceivedEvent

66 CHAPTER 5. INTEGRATION INTO AUTOSAR ARCHITECTURE

}
}
implementation MyConsumerImplementation for MyConsumerBehavior {
language c
codeDescriptor "src"

}

Listing 5.4: Description of TheConsumer component

Finally, we have created a system composition (see Listing 5.5) with TheProducer and
TheConsumer components and connected their ports together. We also had to map the
ports to signals5, otherwise the components would communicate only locally through RTE.
When ports are mapped to signals, the RTE will communicate with the COM module, which
sends/receives signals through the communication stack. The composition is extracted to an
AUTOSAR XML file called ECU Extract and will be used in the ECU Configuration project.

@EcuExtract
composition MyEcuExtract {

@ImplMapping
prototype MyProducer TheProducer
@ImplMapping
prototype MyConsumer TheConsumer

ports {
@SignalMappings
provides TheProducer.MySenderPort Tx1
@SignalMappings
requires TheConsumer.MyReceiverPort Rx1

}
connect TheProducer.MySenderPort to TheConsumer.MyReceiverPort

}

Listing 5.5: Description of the composition

5.6.2 ECU Configuration Project

ECU Configuration project is used for configuration of a particular ECU and also holds
an implementation of runnables in the Software Components. Configuration files for Basic
Software modules are generated using the BSW Editor. The ECU extract, obtained in the
previous step, is used to generate the RTE layer with the RTE Editor. Once all necessary
files are generated, the project is compiled into an executable file, which can be downloaded
to the target board/ECU.

In this section, we describe an implementation of runnables from both TheProducer and
TheConsumer components. We also briefly describe configuration of some Basic Software
modules that are directly relevant to the demo. The list of all modules needed for running
the demo, together with their configuration options is given in Appendix A.

5Rx1 and Tx1 are just names here. They must be assigned to real AUTOSAR signals in configuration of
the COM module.

5.6. DEMO APPLICATION 67

5.6.2.1 TheProducer runnable

TheProducer runnable (see implementation in Listing 5.6) is called periodically and reads
value of a button on the board and calls a generated method of the RTE to update data ele-
ment in its port. The runnable should not directly call functions of Basic Software modules,
but to make the demo simpler, we wanted to use the DIO module directly. However, we
were not able to successfully configure it to read the button state so we have used function
from the STM32 Standard Peripheral Library. In a real world application, the Software
Component should use AUTOSAR interface to communicate with a Basic Software module
or use another Software Component to access hardware on the microcontroller.

void MyProducerRunnable(void) {
uint8 value;
value = GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_9);
Rte_IWrite_MyProducerRunnable_MySenderPort_MyElement(value);

}

Listing 5.6: Implementation of a runnable in TheProducer

5.6.2.2 TheConsumer runnable

TheConsumer runnable (see implementation in Listing 5.7) is called once the data element
in the port of the component changes. The value is read using a generated method of the
RTE and depending on the value, the blue LED is switched on or off. As mentioned above,
the DIO module is used directly for simplicity, but it should be avoided when used in a real
world application.

void MyConsumerRunnable(void) {
uint32 x = Rte_IRead_MyConsumerRunnable_MyReceiverPort_MyElement();
if (x > 0) {
Dio_WriteChannel(DIO_CHANNEL_NAME_LED_CHANNEL4, STD_HIGH);

} else {
Dio_WriteChannel(DIO_CHANNEL_NAME_LED_CHANNEL4, STD_LOW);

}
}

Listing 5.7: Implementation of a runnable in TheConsumer

5.6.2.3 EcuC module

The EcuC is a virtual module used to collect ECU configuration specific or global configu-
ration information. In our case it serves for storing a collection of PDUs, or more precisely,
their names. These names can be then referenced in other modules which helps to generate
more readable configuration files, because modules can use these PDU names in constants
representing PDU-IDs.

68 CHAPTER 5. INTEGRATION INTO AUTOSAR ARCHITECTURE

5.6.2.4 COM module

The COM module contains specification of signals and I-PDUs to which they are packed.
We have added a specification of AUTOSAR signals named Tx1 and Rx1, which correspond
to MaCAN signals SIGNAL_A and SIGNAL_B respectively. These signals contain a reference to
signal names used in the system composition, so when a Software Component writes/reads
a port mapped to a signal, the RTE knows it must use functions of the COM module to
send/receive that signal. The Tx1 signal has transfer property set to TRIGGERED_ON_CHANGE
so it is transmitted only when it’s value changes. The Rx1 signal must have a notification
callback specified, so the COM module can notify the RTE about signal change. In our
demo, the callback is RTE’s generated function Rte_COMCbk_COM_SIGNAL_ID_RX1.

5.6.2.5 PDU Router module

In our demo, the PDU Router is configured to route the Tx1 signal packed in I-PDUs to the
CDD_Macan module, which signs it and sends it to the CAN Interface module. Additionally,
the signal is also routed directly to the CAN Interface module to be sent without a signature.
In other direction, I-PDUs containing the Rx1 signal are accepted from the CDD_Macan
module and also from the CAN Interface module and are further routed to the COM module,
which does not care from which module the I-PDU came. This is used to demonstrate, that
addition of the CDD_Macan module has no impact on layers above the PDU Router.

5.6.2.6 CAN Interface module

All CAN L-PDUs sent between the CAN Interface module and the CAN Driver module must
be specified in its configuration. When upper layer wants to send data, it specifies PDU-ID
of the L-PDU that should be used for transmission. In our case there are L-PDUs carrying
plain signals, signed signals and other L-PDUs used in MaCAN communication for session
key requests, ACK messages etc. Because we have disabled DLC check for incoming L-PDUs,
it is not necessary to configure separate L-PDUs for CAN frames with the same CAN-ID,
but different DLC. However this is not the case for outgoing PDUs. A list of CAN L-PDUs
(which are directly associated with CAN frames) used in this demo is listed in following
table:

CAN-ID DLC Direction Dest./Src. Description
0x0 8 Receive CDD_Macan Plain time from the timeserver
0x1 8 Receive PduR Plain signal from NODE2
0x100 8 Receive CDD_Macan Crypt-frames from the keyserver
0x101 8 Receive CDD_Macan Crypt-frames from the timeserver
0x103 8 Receive CDD_Macan Crypt-frames from NODE2
0x201 8 Receive CDD_Macan Signed signal from NODE2
0x2 8 Transmit PduR Plain signal to NODE2
0x102 7 Transmit CDD_Macan Crypt-frames for other nodes
0x102 8 Transmit CDD_Macan Crypt-frames for other nodes
0x200 8 Transmit CDD_Macan Signed signal to NODE2

5.6. DEMO APPLICATION 69

5.6.2.7 CAN Driver module

We have used a template configuration for the STM3210C-EVAL board shipped with Arctic
Studio to configure the CAN Driver module. The only change we have made is to set CAN
Hardware objects to accept standard CAN-IDs instead of extended CAN-IDs.

5.6.2.8 OS module

The Operating System module is an essential part of our demo. Its configuration contains
specification of alarms, counters, events and tasks. Alarms are used to periodically raise
events, counters can be used for time measurement and tasks are pieces of code which can
be activated.

In our demo, there are 3 tasks which are activated right after the start of the operating
system – Os_TaskInit, Os_TaskPeriodic and RteTask. The Os_TaskInit task is used to
initialize modules and the communication stack and its implementation is taken from other
demos in Arctic Core. The Os_TaskPeriodic waits for events raised every 10ms and 500ms
and is used to call scheduled functions of the Basic Software modules. The implementation
of the task is listed in Listing 5.8. The RteTask is generated by RTE and executes runnables
when events associated with them are raised.

void OsTask_Periodic(void) {

EventMaskType eventMask = 0;
while (1) {

WaitEvent(EVENT_MASK_OsEvent_500ms | EVENT_MASK_OsEvent_10ms);
GetResource(RES_SCHEDULER);
GetEvent(TASK_ID_OsTask_Periodic, &eventMask);

/∗∗ Alarm 10ms − Main functions ∗/
if (eventMask & EVENT_MASK_OsEvent_10ms) {

Can_MainFunction_Mode();
CanSM_MainFunction();
Com_MainFunctionRx();
Com_MainFunctionTx();
ComM_MainFunction(COMM_NETWORK_HANDLE_ComMChannel);
CDD_Macan_MainFunction();

}

/∗∗ Alarm 500ms ∗/
if (eventMask & EVENT_MASK_OsEvent_500ms) {

CDD_Macan_MainFunction_Hk();
}
ClearEvent(EVENT_MASK_OsEvent_500ms | EVENT_MASK_OsEvent_10ms);
ReleaseResource(RES_SCHEDULER);

}
}

Listing 5.8: Os_TaskPeriodic task

70 CHAPTER 5. INTEGRATION INTO AUTOSAR ARCHITECTURE

We have also configured one counter, which is used in MaCAN implementation to read
time. The counter is increased every 1 ms.

5.6.2.9 RTE

In the configuration of the RTE, we have instantiated prototypes of the Software Compo-
nents and mapped events to the RteTask mentioned above. The generated code of the task
is listed in Listing 5.9.

void RteTask(void) { /∗∗ @req SWS_Rte_02251 ∗/
EventMaskType Event;
do {

SYS_CALL_WaitEvent(EVENT_MASK_StepEvent |
EVENT_MASK_DataReceivedEvent);

SYS_CALL_GetEvent(TASK_ID_RteTask, &Event);

if (Event & EVENT_MASK_DataReceivedEvent) {
SYS_CALL_ClearEvent (EVENT_MASK_DataReceivedEvent);
Rte_TheConsumer_MyConsumerRunnable();

}
if (Event & EVENT_MASK_StepEvent) {

SYS_CALL_ClearEvent (EVENT_MASK_StepEvent);
Rte_TheProducer_MyProducerRunnable();

}

} while (RTE_EXTENDED_TASK_LOOP_CONDITION);
}

Listing 5.9: RteTask task

5.6.3 Running the demo

The demo was compiled using a generated makefile in the ECU configuration project for the
STM3210C-EVAL board and the binary file was downloaded to the board using OpenOCD.
On GNU/Linux we have launched the keyserver, the timeserver and NODE2, which was con-
figured to send 1 and 0 alternately as value of SIGNAL_B which caused blinking of the blue
LED on the board. NODE1 (running on the board) was sending SIGNAL_A as reaction on the
button press/release. The signal value was displayed in the console by NODE2.

Chapter 6

Conclusion

In this work, we focused on the MaCAN protocol and its integration into the AUTOSAR
architecture. We have presented an augmented specification of the protocol with description
of frame formats, that were missing in the original paper [14].

Next, we performed tests with two implementations of the MaCAN protocol – one devel-
oped at CTU and another developed by Volkswagen. These implementations were initially
not compatible. To find the incompatibilities, we have created a demo application and
analyzed the communication between the nodes. Every incompatibility represented an ob-
stacle in the communication flow, so to move forward, we had to modify our implementation
progressively. In the end, we managed to make these implementations work together and
presented a list of incompatibilities we have found. Then, our implementation was subject to
a resource usage analysis, which determined size of an additional memory needed when using
MaCAN protocol in contrast to traditional CAN communication. We have also measured
running times of cryptographic functions. These tests showed that cryptographic functions
run much faster on a dedicated hardware cryptographic coprocessor SHE.

Before integration into the AUTOSAR architecture we also had to port our implementa-
tion of the MaCAN protocol to the STM32 architecture. This step was not planned initially,
but because Arctic Core was implemented neither for GNU/Linux nor for Tricore TC1798,
we had to find a different hardware with a compatible architecture. Finally we successfully
ported and tested the implementation on the STM3210C-EVAL board.

In order to understand how to integrate MaCAN into AUTOSAR we had to study the
AUTOSAR architecture and its communication stack in great detail. Based on this gained
knowledge, we have decided to create a Complex Device Driver module, which encapsu-
lates the functionality of our MaCAN implementation. The module is embedded within
the communication stack and it is able to secure signals without impact on higher layers of
the AUTOSAR architecture. We have created and successfully tested an implementation of
this module using a simple demo. Since this is the first prototype implementation, there are
many opportunities for improvements including: implementation of an AUTOSAR Interface,
creation of a GUI based configuration tool or implementation of all requirements imposed
on Complex Device Drivers (described in [7]).

71

72 CHAPTER 6. CONCLUSION

Bibliography

[1] AUTOSAR. AUTOSAR - The Worldwide Automotive Standard for E/E Systems
[online]. 2014. [cit. 27. 4. 2014]. Available at: http://www.autosar.org/download/
papersandpresentations/AUTOSAR_Brochure_EN.pdf.

[2] AUTOSAR. AUTOSAR Home [online]. 2014. [cit. 26. 4. 2014]. Available at: http:
//www.autosar.org/index.php?p=0&up=0&uup=0&uuup=0.

[3] AUTOSAR. AUTOSAR Layered software architecture. January 2013.

[4] AUTOSAR. Software Component Template. January 2013.

[5] AUTOSAR. Virtual Function Bus. January 2013.

[6] AUTOSAR. Specification of CAN Interface. January 2013.

[7] AUTOSAR. Complex driver design and integration guideline. January 2013.

[8] AUTOSAR. Specification of PDU Router. January 2013.

[9] AUTOSAR. Specification of Communication stack types. January 2013.

[10] AUTOSAR. Specification of PDU Router. January 2013.

[11] BOSCH. CAN with Flexible Data-Rate. January 2013.

[12] BRUNI, A. et al. Formal Security Analysis of the MaCAN Protocol., s. 241–255. Lecture
Notes in Computer Science. Springer, 2014. doi: 10.1007/978-3-319-10181-1_15. ISBN
978-3-319-10180-4.

[13] DWORKIN, M. J. SP 800-38B. Recommendation for Block Cipher Modes of Operation:
the CMAC Mode for Authentication. 2005.

[14] HARTKOPP, O. – SCHILLING, R. MaCAN – Message Authenticated CAN. In Escar
Conference, Berlin, Germany, November 2012.

[15] MIKULKA, L. Low-level software for automotive electronic control units. Czech Tech-
nical University in Prague, 2013.

[16] MILLER, C. – VALASEK, C. Adventures in Automotive Networks and Control Units.
Last Accessed from h ttp://illmatics. com/car_ hacking. pdf on. 2013, 13.

73

http://www.autosar.org/download/papersandpresentations/AUTOSAR_Brochure_EN.pdf
http://www.autosar.org/download/papersandpresentations/AUTOSAR_Brochure_EN.pdf
http://www.autosar.org/index.php?p=0&up=0&uup=0&uuup=0
http://www.autosar.org/index.php?p=0&up=0&uup=0&uuup=0

74 BIBLIOGRAPHY

[17] SCHAAD, J. – HOUSLEY, R. RFC 3394, Advanced Encryption Standard (AES) Key
Wrap Algorithm. Internet Engineering Task Force. 2002.

[18] VAN HERREWEGE, A. – SINGELEE, D. – VERBAUWHEDE, I. CANAuth-a simple,
backward compatible broadcast authentication protocol for CAN bus. In ECRYPT
Workshop on Lightweight Cryptography 2011, 2011.

[19] Vector Informatik Gmbh. Introduction to AUTOSAR [online]. 2014. [cit. 26. 4. 2014].
Available at: https://elearning.vector.com/vl_autosar_introduction_portal_
en.html.

[20] Vector Informatik Gmbh. Introduction to CAN [online]. 2014. [cit. 20. 4. 2014]. Available
at: https://elearning.vector.com/vl_can_introduction_en.html.

[21] WIKIPEDIA. Can bus, 2014. Available at: http://en.wikipedia.org/wiki/CAN_bus.
[Online; accessed 22-April-2014].

[22] WOLF, M. – WEIMERSKIRCH, A. – PAAR, C. Security in automotive bus systems.

[23] ZIERMANN, T. – WILDERMANN, S. – TEICH, J. CAN+: A new backward-
compatible Controller Area Network (CAN) protocol with up to 16× higher data rates.
In Design, Automation & Test in Europe Conference & Exhibition, 2009. DATE’09., s.
1088–1093. IEEE, 2009.

https://elearning.vector.com/vl_autosar_introduction_portal_en.html
https://elearning.vector.com/vl_autosar_introduction_portal_en.html
https://elearning.vector.com/vl_can_introduction_en.html
http://en.wikipedia.org/wiki/CAN_bus

Chapter 7

List of Abbreviations

AES Advanced encryption standard

BASH Bourne Again SHell

BRS Bit Rate Switch

BSW Basic Software

CAN Controller Area Network

CAN-FD CAN with Flexible Data rate

CDD Complex Device Driver

CMAC Cipher based Message Authentication Code

CPU Central Processing Unit

CRC Cyclic Redundancy Check

CSMA/CR Carrier Sense Multiple Access with Collision Resolution

DLC Data Length Code

ECU Electronic Control Unit

EDL Extended Data Length

ELF Executable and Linkable format

FIFO First In First Out

GCC GNU Compiler Collection

GDB GNU DeBugger

GPIO General Purpose Input Output

GUI Graphic User Interface

75

76 CHAPTER 7. LIST OF ABBREVIATIONS

HMAC Keyed-hash Message Authentication Code

IDE Integrated Development Environment

JSON JavaScript Object Notataion

JTAG Joint Test Action Group

KS Keyserver

LCD Liquid Crystal Display

LED Light Emitting Diode

LIN Local Interconnect Network

LTK Long-Term Key

MAC Message Authentication Code

MCAL Microcontroller Abstraction Layer

MOST Media Oriented Systems Transport

OSEK Offene Systeme und deren Schnittstellen für die Elektronik in Kraftfahrzeugen

OTG On The Go

PDU Protocol Data Unit

RTE RealTime Environment

SWC Software Component

TS Timeserver

USART Universal Synchronous Asynchronous Receiver and Transmitter

USB Universal Serial Bus

VFB Virtual Function Bus

Chapter 8

Enclosed CD table of contents

• arctic-core - source code of Arctic Core with CDD_Macan module.

• ctu-macan - source codes of our macan implementation

• thesis - this thesis in PDF and Latex format

77

78 CHAPTER 8. ENCLOSED CD TABLE OF CONTENTS

Appendices

79

Appendix A

Guide – Creating demo project in
Arctic Studio

This guide describes how to create a simple AUTOSAR application in Arctic Core studio.
This application consists of two software components, which communicate with outer world
using authenticated CAN frames. The demo is based on 1signal demo from MaCAN repos-
itory. This AUTOSAR node takes role of NODE1 and communicates with the keyserver,
the timeserver and NODE2 which run on the GNU/Linux machine.

A.1 Downloading Arctic Core source code

1. Clone source code of Arctic Core with MaCAN module from remote GIT repository:

git clone git@rtime.felk .cvut.cz:arc−core−macan
cd arc−core−macan/core/communication/CDD_Macan/macan

2. It is also necessary to initialize Macan submodule:

git submodule update −−init

A.2 Preparing Arctic Studio

1. Download Arctic Studio 4.1.0 for ARM-Architecture from Arc Core website

2. Launch Arctic Studio.exe

3. Create empty directory which will serve as a workspace

4. Select File > Switch workspace > Other... and select the directory created in the
previous step and click OK

5. Select File > Import > General > Existing Projects into Workspace and click
Next

81

82 APPENDIX A. GUIDE – CREATING DEMO PROJECT IN ARCTIC STUDIO

6. Select the directory where you cloned Arctic Core source code

7. A list of projects will appear. Select only core and Boards projects

8. Click Finish

A.3 Creating application model

Application model needs to be created first. It is a high level and hardware independent
description of SWCs, their interfaces and how are they communicating with each other. This
model will be then exported in a form of XML into ECU configuration project.

A.3.1 Create project

1. Click File > New > Other...

2. Select ArcCore AUTOSAR Project under ArcCore and click Next

3. Name the project "example-application"

4. Click Finish

5. The workbench will suggest opening the AUTOSAR perspective, it is recommended
to accept.

6. Right-click on the project and select Properties

7. In Project References select core project and click OK

A.3.2 Create interfaces

1. Click File > New > Other...

2. Select ARText swcd File under Other and click Next

3. Make sure Container points to the example-application project

4. Set File Name to "Interfaces"

5. Set Package Name to "Example.Interfaces"

6. Click Finish

7. Open the new file by double clicking it in AUTOSAR Navigator or Project Ex-
plorer

8. If asked to add the ARText nature to the project, click Yes

9. Put following contents in this file:

A.3. CREATING APPLICATION MODEL 83

package Example.Interfaces

import AUTOSAR.Platform.ImplementationDataTypes.∗

interface senderReceiver MySRInterface {
data uint32 MyElement

}
interface clientServer MyNotifyInterface {
operation Notify_Invalid_CMAC_Limit_Reached {

}
}

A.3.3 Create Component Types

1. Follow the steps of Create ARText swcd File above, but this time with

• File Name set to "Components"

• Package Name set to "Example.Components"

2. Open the file Components.swcd

3. Put following contents in this file:

package Example.Components

import Example.Interfaces.MySRInterface
import Example.Interfaces.MyNotifyInterface
import MyProducer.MyProducerBehvior
import MyConsumer.MyConsumerBehavior

component application MyProducer {
ports {
sender MySenderPort provides MySRInterface

}
}

internalBehavior MyProducerBehvior for MyProducer {
runnable MyProducerRunnable [1.0] {
timingEvent 1.0
dataWriteAccess MySenderPort.∗

}
}

implementation MyProducerImplementation for MyProducerBehvior {
language c
codeDescriptor "src"

}

84 APPENDIX A. GUIDE – CREATING DEMO PROJECT IN ARCTIC STUDIO

component application MyConsumer {
ports {

receiver MyReceiverPort requires MySRInterface
server MyServerPort provides MyNotifyInterface

}
}

internalBehavior MyConsumerBehavior for MyConsumer {
runnable MyConsumerRunnable [1.0] {
dataReadAccess MyReceiverPort.∗
dataReceivedEvent MyReceiverPort.MyElement as DataReceivedEvent

}
runnable LedRunnable [1.0] {
timingEvent 1.0

}
runnable Notify_Invalid_CMAC_Limit_Reached [1.0] {
operationInvokedEvent MyServerPort.Notify_Invalid_CMAC_Limit_Reached

}
}

implementation MyConsumerImplementation for MyConsumerBehavior {
language c
codeDescriptor "src"

}

A.3.4 Create an Ecu Extract

1. Follow the steps of Create ARText swcd File above, but this time with

• File Name set to "EcuExtract"

• Package Name set to "Example.EcuExtract"

2. Open the file EcuExtract.swcd

3. Put following contents in this file:

package Example.EcuExtract

import Example.Components.MyProducer
import Example.Components.MyConsumer
import Example.Types.∗

@EcuExtract
composition MyEcuExtract {

@ImplMapping
prototype MyProducer TheProducer
@ImplMapping
prototype MyConsumer TheConsumer

A.4. CREATING AN ECU CONFIGURATION PROJECT 85

ports {
@SignalMappings
provides TheProducer.MySenderPort Tx1
@SignalMappings
requires TheConsumer.MyReceiverPort Rx1

}

connect TheProducer.MySenderPort to TheConsumer.MyReceiverPort
}

A.4 Creating an Ecu Configuration Project

Ecu configuration project is ECU specific project used to configure various components of
the ECU and generate source code from application model.

A.4.1 Create project

1. Click File > New > C Project

2. Set Project name to "example-ecu"

3. Set Project type to Empty Arctic Core Project

4. Set Toolchain to Core Builder ARM Toolchain

5. Click Next

6. Point Arctic Core source path to core dir located in cloned repository

7. Set AUTOSAR Version to 4.1.1

8. Click Finish

9. When prompted, select the target board stm32_stm3210c

10. Click OK

11. Right-click on the project and select Properties

12. In Project References select Boards project and click OK

A.4.2 Import Application Model

1. Switch to AUTOSAR perspective

2. Select example-application in Autosar Navigator

3. Click Project > Rebuild Project

86 APPENDIX A. GUIDE – CREATING DEMO PROJECT IN ARCTIC STUDIO

4. Expand Merged Model element and select AUTOSAR and Example packages

5. Right click on selected packages and select Export to AUTOSAR XML

6. Set project to example-ecu and File Name to Model.arxml

7. Click OK

A.4.3 Create Ecu Configuration File

1. Click File > New > ArcCore Autosar File

2. Set Parent folder to the example-ecu project

3. Set File name to "EcuConfiguration.arxml"

4. Select Create Ecu Configuration and set the name to "MyEcu"

5. Select With an ARPackage and set the name to "Example"

6. Click Finish

7. Open the file with the BSW Editor by double clicking it

8. Set ecuExtact in the ECU Information and options section by clicking the tree button

9. In the dialog, select MyEcuExtractEcuExtract and click OK

A.5 Configuring the ECU

Once the application model is imported, it is time to configure modules of the ECU in the
BSW Editor.

A.5.1 Set MCAL

1. Click on a drop down list in MCAL option and select STM32F107

A.5.2 Can module

1. Select Import > Module...

2. Select /Boards/stm32_stm3210c.arxml > Can and click Finish

3. Double click on CAN module to open BSW Editor

4. Change following settings:

Location Setting name Change to
Can > CanConfigSet > CanHardwareObject:s > CAN_HRH_A1 Can Id Type STANDARD
Can > CanConfigSet > CanHardwareObject:s > CAN_HTH_A1 Can Id Type STANDARD

A.5. CONFIGURING THE ECU 87

A.5.3 EcuC module

1. Click Add and select EcuC module

2. Click OK

3. Double click on EcuC module to open BSW Editor

4. Right click on EcucPduCollection and select create Pdu

5. Click on newly created element

6. Set Pdu shortName to TxPdu

7. Set Pdu Length to 8

8. Using the same way, create PDUs with following names:

Pdu shortName Pdu Length
MacanTxPdu7 8
MacanTxPdu8 8
MacanTxPduSIGNAL_A 8
RxPdu 8
MacanRxPduKEY_SERVER 8
MacanRxPduNODE2 8
MacanRxPduSIGNAL_B 8
MacanRxPduTIME_SERVER 8

A.5.4 CanIf module

NOTE: When setting values using the tree icon, always choose items from Example package,
unless specified otherwise.

1. Click Add and select CanIf module

2. Click OK

3. Double click on CanIf module to open BSW Editor

4. Click on element CanIfCtrlCfg

5. Adjust values of the element as in the figure below:

6. Right click on element CanIfInitCfg and select Create CanInitHohCfg

88 APPENDIX A. GUIDE – CREATING DEMO PROJECT IN ARCTIC STUDIO

7. Right click on element CanIfInitHohCfg and select Create CanHrhCfg

8. Click on newly created element and set the values as follows:

9. Right click on element CanIfInitHohCfg and select Create CanHthCfg

10. Click on newly created element and set the values as follows:

11. Right click on element CanIfInitCfg and select Create CanIfBufferCfg

12. Click on newly created element and set the values as follows:

13. Right click on element CanIfInitCfg and select Create CanIfTxPduCfg

14. Click on newly created element and set the values as follows:

A.5. CONFIGURING THE ECU 89

15. Right click on element CanIfInitCfg and select Create CanIfTxPduCfg

16. Click on newly created element and set the values as follows:

90 APPENDIX A. GUIDE – CREATING DEMO PROJECT IN ARCTIC STUDIO

17. Right click on element CanIfInitCfg and select Create CanIfTxPduCfg

18. Click on newly created element and set the values as follows:

A.5. CONFIGURING THE ECU 91

19. Right click on element CanIfInitCfg and select Create CanIfTxPduCfg

20. Click on newly created element and set the values as follows:

92 APPENDIX A. GUIDE – CREATING DEMO PROJECT IN ARCTIC STUDIO

21. Right click on element CanIfInitCfg and select Create CanIfRxPduCfg

22. Click on newly created element and set the values as follows:

A.5. CONFIGURING THE ECU 93

23. Right click on element CanIfInitCfg and select Create CanIfRxPduCfg

24. Click on newly created element and set the values as follows:

94 APPENDIX A. GUIDE – CREATING DEMO PROJECT IN ARCTIC STUDIO

25. Right click on element CanIfInitCfg and select Create CanIfRxPduCfg

26. Click on newly created element and set the values as follows:

27. Right click on element CanIfInitCfg and select Create CanIfRxPduCfg

28. Click on newly created element and set the values as follows:

A.5. CONFIGURING THE ECU 95

29. Right click on element CanIfInitCfg and select Create CanIfRxPduCfg

30. Click on newly created element and set the values as follows:

96 APPENDIX A. GUIDE – CREATING DEMO PROJECT IN ARCTIC STUDIO

31. Click on element CanIfCtrlDrvCfg and in option Can If Ctrl Drv Init Hoh
Config Ref select CanIfInitHohCfg

32. Click on element CanIfDispatchCfg

33. In option Can If Dispatch User Ctrl Bus Off UL select CAN SM

34. In option Can If Dispatch User Ctrl Mode Indication UL select CAN SM

35. Click on element CanIfPublicCfg

36. Set option Arc Can If Public Max Number Of Tx Buffers to 1

37. Set option Arc Can If Public Tx Buffer Size to 2

38. Set option Can If Public Tx Buffering to True

39. Click on CanIfPrivateCfg and set Can If Private Dlc Check to False

A.5.5 ComM module

1. Click Add and select ConM module

2. Click OK

3. Double click on ComM module to open BSW Editor

4. Click on element ComMChannel

5. Set the values as follows:

6. Right click on element ComMChannel and select Create ComMUserPerChannel

7. Click on newly created element

8. Set option Com MUser Channel to ComMUser

9. Click on ComMNetworkManagement element

10. Set Com MNm Varian to NONE

A.5. CONFIGURING THE ECU 97

A.5.6 CanSM module

1. Click Add and select CanSM module

2. Click OK

3. Double click on CanSM module to open BSW Editor

4. Click on element CanSMConfiguration

5. Set option Can SM Mode Request Repetition Time to 10

6. Click on element CanSMManagerNetwork

7. Set the values as follows:

8. Click on element CanSMController

9. Set option Can SM Controller Id to bxCAN

10. Click on element CanSMGeneral

11. Set option Can SM Main Function Period to 0.01

A.5.7 Det module

1. Click Add and select Det module

2. Click OK

3. There is no need to change any default settings

98 APPENDIX A. GUIDE – CREATING DEMO PROJECT IN ARCTIC STUDIO

A.5.8 Dio module

1. Select Import > Module...

2. Select /Boards/stm32_stm3210c.arxml > Dio and click Finish

3. There is no need to change any default settings

A.5.9 EcuM module

1. Click Add and select EcuM module

2. Click OK

3. Double click on EcuM module to open BSW Editor

4. Click on element EcuMSleepMode

5. Set option Ecu MSleep Mode Mcu Mode Ref to SLEEP, but make sure to select
the one from ArcCore > Boards > stm32_stm3210c > Mcu > McuModule-
Configuration

6. Set option Ecu MWakeup Source Mask to EcuMWakeupSource, but make sure
to select the one from Example package

7. Click on element EcuMFixedConfiguration

8. Set option Ecu MCom MCommunication Allowed List to ComMChannel

9. Set option Ecu MNormal Mcu Mode Ref to NORMAL, but make sure to select
the one from ArcCore > Boards > stm32_stm3210c > Mcu > McuModule-
Configuration

10. Click on element EcuMGeneral

11. Set option Ecu MMain Function Period to 0.01

12. Right click on element EcuM and select Create EcuMFixedGeneral

A.5.10 Mcu module

1. Select Import > Module...

2. Select /Boards/stm32_stm3210c.arxml > Mcu and click Finish

3. There is no need to change any default settings

A.5. CONFIGURING THE ECU 99

A.5.11 Os module

1. Click Add and select Os module

2. Click OK

3. Double click on Os module to open BSW Editor

4. Right click on element Os and select Create OsCounter

5. Click on newly created element

6. Set option Os Counter Type to OS_TICK

7. Right click on element Os and select Create OsEvent

8. Following previous step, create these OsEvents (only OsEvent shortName needs to
be changed):

9. Right click on element Os and select Create OsTask

10. Click on newly created element and set the values as follows:

11. Right click on element Os and select Create OsTask

100 APPENDIX A. GUIDE – CREATING DEMO PROJECT IN ARCTIC STUDIO

12. Click on newly created element and set the values as follows:

13. Right click on element Os and select Create OsTask

14. Click on newly created element and set the values as follows:

15. Right click on each created task and select Create OsTaskAutostart, so the tree on
the left side looks like this:

A.5. CONFIGURING THE ECU 101

16. Right click on element Os and select Create OsAlarm

17. Click on newly created element and set the values as follows:

18. Right click on OsAlarmAction located under this newly created alarm and select
Create OsAlarmSetEvent

19. Click on newly created element and set the values as follows:

20. Right click on this newly created alarm and select Create OsAlarmAutostart

21. Click on newly created element and set the values as follows:

102 APPENDIX A. GUIDE – CREATING DEMO PROJECT IN ARCTIC STUDIO

22. Right click on element Os and select Create OsAlarm

23. Click on newly created element and set the values as follows:

24. Right click on OsAlarmAction located under this newly created alarm and select
Create OsAlarmSetEvent

25. Click on newly created element and set the values as follows:

26. Right click on this newly created alarm and select Create OsAlarmAutostart

27. Click on newly created element and set the values as follows:

A.5. CONFIGURING THE ECU 103

28. Right click on element Os and select Create OsAlarm

29. Click on newly created element and set the values as follows:

30. Right click on OsAlarmAction located under this newly created alarm and select
Create OsAlarmSetEvent

31. Click on newly created element and set the values as follows:

32. Right click on this newly created alarm and select Create OsAlarmAutostart

33. Click on newly created element and set the values as follows:

104 APPENDIX A. GUIDE – CREATING DEMO PROJECT IN ARCTIC STUDIO

34. Right click on element Os and select Create OsApplication

35. Click on newly created element and set the values as follows:

36. Click on element OsOs

37. Change Arc Os Tick Frequency to 1000

38. Change Os Status to STANDARD

A.5. CONFIGURING THE ECU 105

A.5.12 PduR module

1. Click Add and select PduR module

2. Click OK

3. Double click on PduR module to open BSW Editor

4. Right click on element PduR and select Create PduRBswModules

5. Click on newly created element and set the values as follows:

6. Right click on element PduR and select Create PduRBswModules

7. Click on newly created element and set the values as follows:

8. Right click on element PduR and select Create PduRBswModules

9. Click on newly created element and set the values as follows:

10. Click on PduRRoutingTables and set Pdu RConfiguration Id to 1

106 APPENDIX A. GUIDE – CREATING DEMO PROJECT IN ARCTIC STUDIO

11. Right click on PduRRoutingTables and select Create PduRRoutingTable

12. Right click on PduRRoutingTable and select Create PduRRoutingPath

13. Click on this newly created element and set PduRRoutingPath shortName to
RxPath

14. Click on PduRDestPdu under this routing path and set the values as follows:

15. Click on PduRSrcPdu under this routing path and set the values as follows:

16. Right click on PduRRoutingTable and select Create PduRRoutingPath

17. Click on this newly created element and set PduRRoutingPath shortName to
RxPathFromMacan

18. Click on PduRDestPdu under this routing path and set the values as follows:

A.5. CONFIGURING THE ECU 107

19. Click on PduRSrcPdu under this routing path and set the values as follows:

20. Right click on PduRRoutingTable and select Create PduRRoutingPath

21. Click on this newly created element and set PduRRoutingPath shortName to
TxPath

22. Click on PduRDestPdu under this routing path and set the values as follows:

108 APPENDIX A. GUIDE – CREATING DEMO PROJECT IN ARCTIC STUDIO

23. Right click on TxPath and click Create PduRDestPdu

24. Click on newly created element and set the values as follows:

25. Click on PduRSrcPdu under this routing path and set the values as follows:

A.5.13 Port module

1. Select Import > Module...

2. Select /Boards/stm32_stm3210c.arxml > Port and click Finish

3. There is no need to change any default settings

A.5.14 Com module

1. Click Add and select Com module

2. Click OK

3. Double click on Com module to open BSW Editor

A.5. CONFIGURING THE ECU 109

4. Right click on ComConfig element and select Create ComSignal

5. Click on newly created element and set the values as follows:

6. Right click on ComConfig element and select Create ComSignal

7. Click on newly created element and set the values as follows:

110 APPENDIX A. GUIDE – CREATING DEMO PROJECT IN ARCTIC STUDIO

8. Right click on ComConfig element and select Create ComIPduGroup

9. Click on newly created element and set CanIPduGroup shortName to CANIP-
DUs

10. Right click on ComConfig element and select Create ComIPdu

11. Click on newly created element and set the values as follows:

A.5. CONFIGURING THE ECU 111

12. Right click on ComConfig element and select Create ComIPdu

13. Click on newly created element and set the values as follows:

112 APPENDIX A. GUIDE – CREATING DEMO PROJECT IN ARCTIC STUDIO

14. Right click on this newly created element and select Create ComTxIPdu

15. Click on this newly created element and set Com Tx Ipdu Unused Areas Default
to 0

16. Right click on this newly created element and select Create ComTxModeTrue

17. Click on ComTxMode and set the values as follows:

18. Click on ComTimeBase and set the values as follows:

A.5.15 RTE module

1. Click Add and select Rte module

2. Click OK

3. Double click on Rte, when prompted, click on Yes to open RTE Editor

4. Right click on TheConsumer element and select Instantiate prototypes

5. Right click on TheProducer element and select Instantiate prototypes

A.6. GENERATE C FILES FROM THE CONFIGURATION 113

6. Right click on TheConsumer > DataReceivedEvent element and select Map
events to task

7. Select RteTask and click OK

8. In the TheConsumer > DataReceivedEvent row, select DataReceivedEvent in
the Event column

9. Right click onTheConsumer > timingEvent_1_0 element and selectMap events
to task

10. Select RteTask and click OK

11. In the TheConsumer > timingEvent_1_0 row, select StepEvent in the Event
column

12. Right click on TheProducer > timingEvent_1_0 element and selectMap events
to task

13. Select RteTask and click OK

14. In the TheProducer > timingEvent_1_0 row, select StepEvent in the Event
column

15. Configured RTE should look like this:

A.6 Generate C files from the configuration

The ECU is now configured and it is possible to generate C files from the configuration.

1. Open BSW Editor by double clicking EcuConfiguration.arxml in example-ecu
project

2. Click on the gears icon in top right corner to generate the C files. This will take a
while, but the process should finish with no errors.

3. Create a new directory CDD_Macan the under config directory

4. Copy files macan_config.c and macan_config.h from 1signal demo

114 APPENDIX A. GUIDE – CREATING DEMO PROJECT IN ARCTIC STUDIO

5. BASH script CDD_Macan_generate_config.sh from core > communication
> CDD_Macan serves as substitution for GUI config used to configure other BSW
modules. It reads Macan configuration, which was copied in previous steps and other
config files to create config files for CDD_Macan module. It also alters some already
generated configuration files (of PduR, CanIf etc.) since some options, which are
necessary for CDD_Macan module to work, are not available in GUI config. There are
a few parameters in the configuration file, which can be edited. You can copy the script
from its original location to the project root if you wish to change the configuration
parameters, but for this demo, you can stick with defaults and invoke the script from
its original location. But always make sure your present working directory is project
root. Warning: this is a BASH script and it should be launched under Linux.

cd example−ecu/
./../../ arc−core−macan/core/communication/CDD_Macan/

CDD_Macan_generate_config.sh

6. All configuration files are now generated

A.7 Implementation C files

Last step before compilation is to implement runnables of SWCs and other tasks needed by
the operating system.

A.7.1 OsTasks.c

1. Create file OsTasks.c in example-ecu project root

2. Put following contents in the file:

#include "Os.h"
#include "debug.h"
#include "Can.h"
#include "CanIf.h"
#include "CanSM.h"
#include "Com.h"
#include "ComM.h"
#include "Port.h"
#include "PduR.h"
#include "Dio.h"
#include "EcuM.h"
#include "CDD_Macan.h"
#include "uart_console.h"

// needed by button init
#include "stm32f10x_rcc.h"
#include "stm32f10x_gpio.h"

A.7. IMPLEMENTATION C FILES 115

static void init_button() {
GPIO_InitTypeDef GPIO_InitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);

/∗ Configure PD0 and PD2 in output pushpull mode ∗/
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_Init(GPIOB, &GPIO_InitStructure);

}

/∗ Initialization Task ∗/
void OsTask_Init(void) {
// initialize uart
UART_Console_Init();
//run ini functions
EcuM_StartupTwo();
/∗∗ Setup Com stack with necessary parameters∗∗/
Com_IpduGroupVector groupVector;
//Start the IPDU group
Com_ClearIpduGroupVector(groupVector);
Com_SetIpduGroup(groupVector, COM_PDU_GROUP_ID_CANIPDUS, TRUE);
Com_IpduGroupControl(groupVector, FALSE);

//Run CanSM & Can main function once before requesting a full communication
CanSM_MainFunction();
Can_MainFunction_Mode();

//Request ComM for FULL_COMM mode
ComM_RequestComMode(COMM_USER_HANDLE_ComMUser,

COMM_FULL_COMMUNICATION);

CanSM_MainFunction();

init_button();
TerminateTask();

}

void OsTask_Periodic(void) {

EventMaskType eventMask = 0;

while (1) {
WaitEvent(EVENT_MASK_OsEvent_500ms | EVENT_MASK_OsEvent_10ms);

GetResource(RES_SCHEDULER);
GetEvent(TASK_ID_OsTask_Periodic, &eventMask);

/∗∗ Alarm 10ms − Main functions ∗/
if (eventMask & EVENT_MASK_OsEvent_10ms) {

Can_MainFunction_Mode();

116 APPENDIX A. GUIDE – CREATING DEMO PROJECT IN ARCTIC STUDIO

CanSM_MainFunction();
Com_MainFunctionRx();
Com_MainFunctionTx();
ComM_MainFunction(COMM_NETWORK_HANDLE_ComMChannel);
CDD_Macan_MainFunction();

}

/∗∗ Alarm 500ms ∗/
if (eventMask & EVENT_MASK_OsEvent_500ms) {

CDD_Macan_MainFunction_Hk();

}
ClearEvent(EVENT_MASK_OsEvent_500ms | EVENT_MASK_OsEvent_10ms);
ReleaseResource(RES_SCHEDULER);
}

}

/∗ needed by OS ∗/
void OsIdle(void) { while(1){} }
void ErrorHook (StatusType Error) {}
void ShutdownHook (StatusType Error) {}
void StartupHook (void) {}

A.7.2 TheConsumer.c

1. Create file TheConsumer.c in example-ecu project root

2. Put following contents in the file:

#include "Rte_MyConsumer.h"
#include "Rte_Type.h"
#include "Dio.h"

int stop_receiving = 0;
int led_mod = 50;

void MyConsumerRunnable(void) {

// check if we can receive data
if (stop_receiving) {

return;
}

uint32 x = Rte_IRead_MyConsumerRunnable_MyReceiverPort_MyElement();
if (x > 0) {
Dio_WriteChannel(DIO_CHANNEL_NAME_LED_CHANNEL4, STD_HIGH);

} else {
Dio_WriteChannel(DIO_CHANNEL_NAME_LED_CHANNEL4, STD_LOW);

A.8. COMPILATION 117

}
}
void LedRunnable() {

static uint8 cnt;
static uint32 cnt2 ;

if ((cnt % 2) == 0) {
Dio_WriteChannel(DIO_CHANNEL_NAME_LED_CHANNEL1, STD_HIGH);

} else {
Dio_WriteChannel(DIO_CHANNEL_NAME_LED_CHANNEL1, STD_LOW);

}

if(++cnt2 % led_mod == 0) {
cnt++;

}
}
void Notify_Invalid_CMAC_Limit_Reached(void) {
// MaCAN notified us that we should stop receiving data
stop_receiving = 1;
// blink green LED faster
led_mod = 5;
// switch off blue LED
Dio_WriteChannel(DIO_CHANNEL_NAME_LED_CHANNEL4, STD_LOW);

}

A.7.3 TheProducer.c

1. Create file TheProducer.c in example-ecu project root

2. Put following contents in the file:

#include "Rte_MyProducer.h"
#include "Dio.h"
#include "stm32f10x_gpio.h"

void MyProducerRunnable(void) {

uint8 value;

value = GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_9);

//value = Dio_ReadChannel(DIO_CHANNEL_NAME_BUTTON_CHANNEL);
Rte_IWrite_MyProducerRunnable_MySenderPort_MyElement(value);

}

A.8 Compilation

1. Switch to C/C++ perspective

118 APPENDIX A. GUIDE – CREATING DEMO PROJECT IN ARCTIC STUDIO

2. On the right side, select Make target tab

3. Double click on all under example-ecu

4. Once the compilation process finishes, the executable file example-ecu.elf is created
in
obj_stm32_stm3210c directory in the project root

A.9 Downloading binary file to target board

Downloading of the binary file to the target board is done using OpenOCD. You can perform
the following steps in any directory, you don’t need to be in project root. Just make sure
you have the executable file mentioned in the previous section in current directory.

1. Create file load-jt_usb5.cfg and put the following contents to this file:

telnet_port 4444
gdb_port 3333
#set CHIPNAME STM32F107VCT6
#set WORKAREASIZE 0x10000
interface ftdi
#ftdi_device_desc "Dual␣RS232"
ftdi_vid_pid 0x0403 0x6010

ftdi_layout_init 0x05f8 0x0cfb
ftdi_layout_signal nTRST −data 0x0010 −noe 0x0800
ftdi_layout_signal nSRST −ndata 0x0040 −noe 0x0400

reset layout for ul_usb1 and jt_usb5 with ft2232
7 TRST NTRST IOL0
6 nHRST RST IOL2
4 RTCK SRST IOL1

#source [find interface /ftdi/xds100v2.cfg]
source [find board/stm3210c_eval.cfg]
reset_config trst_and_srst

init
jtag arp_init−reset
#ftdi_set_signal PWR_RST 1; jtag arp_init

2. Create file flash.sh

openocd −c "source␣[find␣load−jt_usb5.cfg]" −c "stm32f1x.cpu␣arp_halt" −c "wait_halt"
\

−c "program␣\"example−ecu.elf\"␣reset"

3. Make this script executable and invoke it:

./ flash .sh

